Skip to main content
Log in

Fabrication of Thin-Film Solar Cells Based on CdTe Films and Investigation of Their Photoelectrical Properties

  • DIRECT CONVERSION OF SOLAR ENERGY INTO ELECTRICAL ENERGY
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

This study presents the results of investigating thin-film CdS/CdTe-based solar cells obtained on glass substrates with In2O3(Sn) and SnO2 frontal electrodes. On the surface of frontal electrodes (In2O3(Sn)/SnO2), 100-nm thick cadmium sulfide films were deposited by vacuum thermal evaporation at a substrate temperature of 200°C, then application of 4–5-μm thick cadmium telluride films by chemical molecular beam deposition at a substrate temperature of 600°C. The obtained heterosystems were subjected to “chloride” treatment, which is a standard technological operation for the fabrication of efficient solar cells based on CdS/CdTe. Photoelectrical characteristics of the resulting solar cells were studied. An increase in the efficiency of thin-film solar cells after heat treatment was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. https://www.pv-magazine.com/2019/08/20/polysilicon-prices-to-rebound-in-september/.

  2. http://www.pvmagazine.com/news/details/beitrag/ first-solar-sets-new-cadmiumtelluride-thin-film-cell-efficiency-record-at-22.1_100023341/.

  3. http://www.renewableenergyworld.com/rea/blog/post/ 2014/03/two-thin-film-solar-efficiency-recordsbro ken-this-week?cmpid=WNL-Wednesday-March5-2014.

  4. http://www.businesswire.com/news/home/2013040-9006059/en/Solar-Sets-CdTe-Module-Efficiency-World-Record. Accessed 2013.

  5. https://www.ise.fraunhofer.de/content/dam/ise/de/ documents/publications/studies/Photovoltaics-Report.pdf/.

  6. www.nrel.gov/education/pdfs/educational_resources/ high_school/solar_cell_history.pdf.

  7. Britt, J., Ferekides, C., et al., Thin-film CdS/CdTe solar cell with 15.8% efficiency, Appl. Phys. Lett., 1993, vol. 62, no. 22, pp. 2851–2852.

    Article  Google Scholar 

  8. Ohyama, H., Aramoto, T., Kumazawa, S., Higuchi, H., et al., 16.0% efficient thin-film CdS/CdTe solar cells, Jpn. J. Appl. Phys., 1997, vol. 36, no. 1, p. 10.

    Google Scholar 

  9. Green, M.A., Emery, K., King, D.L., et al., Solar cell efficiency tables (version 18), Prog. Photovolt.: Res. Appl., 2001, vol. 9, pp. 287–293.

    Article  Google Scholar 

  10. Wu, X., Keane, J.C., Dhere, R.G., et al., 16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell, in Proceedings of the 17th Europe Photovoltaic Solar Energy Conference,2001, pp. 995–1000.

  11. Green, M.A., Emery, K., Hishikawa, Y., et al., Solar cell efficiency tables (version 40), Prog. Photovolt.: Res. Appl., 2012, vol. 20, pp. 606–614.

    Article  Google Scholar 

  12. Green, M.A., Emery, K., Hishikawa, Y., et al., Solar cell efficiency tables (version 41), Prog. Photovolt.: Res. Appl., 2013, vol. 21, pp. 1–11.

    Article  Google Scholar 

  13. Gloeckler, M., Sankin, I., and Zhao, Z., CdTe solar cells at the threshold to 20% efficiency, IEEE J. Photovolt., 2013, vol. 3, no. 4, pp. 1389–1393.

    Article  Google Scholar 

  14. Shockley, W. and Queisser, H.J., Detailed balance limit of efficiency in P-N junction solar cells, J. Appl. Phys., 1961, vol. 32, no. 3, pp. 510–510.

    Article  Google Scholar 

  15. Geisthardt, R.M., Topic, M., and Sites, J.R., Status and potential of cdTe solar-cell efficiency, IEEE J. Photovolt., 2015, vol. 5, no. 4, pp. 1217–1221.

    Article  Google Scholar 

  16. Sites, J. and Pan, J., Strategies to increase CdTe solar-cell voltage, Thin Solid Films, 2007, vol. 515, no. 15, pp. 6099–6102.

    Article  Google Scholar 

  17. Burst, J.M., Duenow, J.N., Albin, D.S., et al., CdTe solar cells with open-circuit voltage breaking the 1 V barrier, Nat. Energy, 2016, vol. 1, no. 3, p. 16015.

    Article  Google Scholar 

  18. Zhao, Yu. et al., Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%, Nat. Energy, 2016, vol. 1, pp. 160–167.

    Google Scholar 

  19. Razykov, T.M., Kuchkarov, K.M., Ferekides, C.S., et al., Characterization of CdTe thin films of different compositions, obtained by CMBD for thin film solar cells, Solar Energy, 2017, vol. 144, pp. 411–416.

    Article  Google Scholar 

  20. Mecandless, B.E., Moulton, L.V., and Birikmire, R.W., Recrystallization and Sulfer diffusion in CdCl2 treated CdTe/ CdS thin films, Prog. Photovolt.: Res. Appl., 1997, vol. 5, pp. 249–260.

    Article  Google Scholar 

  21. Razykov, T.M., Anderson, T., Acher, R., Crasiun, V., Crisale, O., Goswami, Y., Kuchkarov, K.M., Li, S., Wijayaghawan, S., and Ergashev B., Electron microprobe X-ray spectral analysis of CMBD CdTe films of different composition, Appl. Sol. Energy, 2009, vol. 45, no. 1, pp. 48–50.

    Article  Google Scholar 

  22. Razykov, T.M., Kuchkarov, K.M., Ergashev, B.A., and Khubbimov, A.N., The effect of complex thermal treatment on the electrophysical and morphological properties of CdTe films, obtained by chemical molecular beam deposition, Appl. Sol. Energy, 2010, vol. 46, no. 2, pp. 111–113.

    Article  Google Scholar 

  23. Razykov, T.M., Amin, N., Ergashev, B., et al., Effect of CdCl2 treatment on physical properties of CdTe films with different compositions fabricated by CMBD, Appl. Sol. Energy, 2013, vol. 49, no. 1, pp. 35–39.

    Article  Google Scholar 

  24. Levi, D.H., Moutinho, H.R., Hasoon, F.A., et al., Micro through nanostructure investigations of polycrystalline CdTe: correlations with processing and electronic structures, in Proceedings of the 1st WCPEC Conference,1994, pp. 127–131.

  25. Dhere, R., Fluegel, B., Mascarenhas, A., et al., Investigation of effects of processing and impurities on the properties of CdTe using microscopic two-dimensional photoluminescence image technique, in Proceedings of the 34th IEEE PVSC Conference, 2009, pp. 1443–1447.

  26. Nollet, P., Burgelman, M., Degrave, S., and Beier, J., Importance of air ambient during CdCl2 treatment of thin film CdTe solar cells studied through temperature dependent admittance spectroscopy, in Proceedings of the 29th IEEE PVSC Conference, 2002, pp. 704–707.

Download references

Funding

The study was carried out as part of an international project, grant no. M/CRDF43/2014-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Kuchkarov.

Ethics declarations

The authors declare that they do not have a conflict of interest.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razykov, T.M., Kuchkarov, K.M., Ergashev, B.A. et al. Fabrication of Thin-Film Solar Cells Based on CdTe Films and Investigation of Their Photoelectrical Properties. Appl. Sol. Energy 56, 94–98 (2020). https://doi.org/10.3103/S0003701X20020097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X20020097

Keywords:

Navigation