Advertisement

Combined Method of Visualization of Functionally Defined Surfaces and Three-Dimensional Textures

  • S. I. VyatkinEmail author
  • B. S. DolgovesovEmail author
Analysis and Synthesis of Signals and Images
  • 1 Downloads

Abstract

A combined method of object visualization based on analytical and scalar perturbation functions and three-dimensional textures with the use of graphics processing units is proposed. To display the terrain and the change in levels of detail, the same method as that for color textures is applied, and vertex shaders are used in the case of scattered light. A method of real-time visualization of volumetric clouds is described. For this purpose, it is proposed to form three-dimensional textures by means of pre-processing of the cloud structure and volume-oriented visualization.

Keywords

perturbation functions three-dimensional texture volumetric clouds scattered light volume-oriented visualization graphics processing units 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Vyatkin, “Transformations of Functionally Defined Forms,” Progr. Sist. Vychisl. Met. 9(4), 484–499 (2014).Google Scholar
  2. 2.
    S. I. Vyatkin, “Complex Surface Modeling Using Perturbation Functions,” Avtometriya 43(3), 40–47 (2007) [Optoelectron., Instrum. Data Process. 43 (3), 226–231 (2007)].Google Scholar
  3. 3.
    S. I. Vyatkin, “Method of Binary Search for Image Elements of Functionally Defined Objects Using Graphics Processing Units,” Avtometriya 50(6), 89–96 (2014) [Optoelectron., Instrum. Data Process. 50 (6), 606–612 (2014)].Google Scholar
  4. 4.
    S. I. Vyatkin, “Recursive Search Method for the Image Elements of Functionally Defined Surfaces,” Avtometriya 53(3), 53–57 (2017) [Optoelectron., Instrum. Data Process. 53 (3), 245–249 (2017)].Google Scholar
  5. 5.
    S. I. Vyatkin, “Modeling of Inhomogeneities in Visualization of Atmospheric Effects,” Vestn. Komp. Inform. Tekhnol. 146(7), 9–14 (2016).Google Scholar
  6. 6.
    J. F. Blinn, “A Generation of Algebraic Surface Drawing,” ACM Trans. Graph. 1(3), 235–256 (1982).CrossRefGoogle Scholar
  7. 7.
    J. Bloomenthal and K. Shoemake, “Convolution surfaces,” Comput. Graph. 25(4), 251–256 (1991).CrossRefGoogle Scholar
  8. 8.
    G. Sealy and G. Wyvill, “Smoothing of Three Dimensional Models by Convolution,” in Proc. of the Computer Graphics Intern. Conf. Pohang, South Korea, June 24–28, 1996, pp. 184–190.Google Scholar
  9. 9.
    J. McCormack and A. Sherstyuk, “Creating and Rendering Convolution Surfaces,” Comput. Graph. Forum 17(2), 113–120 (1998).CrossRefGoogle Scholar
  10. 10.
    S. Muraki, “Volumetric Shape Description of Range Data Using ‘Blobby Model’,” Comput. Graph. 25(4), 227–235 (1991).CrossRefGoogle Scholar
  11. 11.
    H. Nishimura, M. Hirai, T. Kawai, et al., “Object Modelling by Distribution Function and a Method of Image Generation,” Trans. Institute Electron. Commun. Eng. Japan J68-D(4), 718–725 (1985).Google Scholar
  12. 12.
    G. Wyvill, C. McPheeters, and B. Wyvill, “Data Structure for Soft Objects,” Vis. Comput. 2(4), 227–234 (1986).CrossRefGoogle Scholar
  13. 13.
    P. Shirley, M. Ashikhmin, and S. Marschner, Fundamentals of Computer Graphics (CRC Press, Boca Raton, 2009).CrossRefzbMATHGoogle Scholar
  14. 14.
    S. I. Vyatkin, “Visualization of a Photorealistic Terrain on the Basis of a Texture-Form with the Use of Graphics Processing Units,” Progr. Sist. Vychisl. Met. 10(1), 89–107 (2015).Google Scholar
  15. 15.
    S. I. Vyatkin, “Method of Calculating Scattered Light and Fog Intensities with the use of Graphics Processing Units,” Vestn. Komp. Inform. Tekhnol. 155(5), 35–38 (2017).Google Scholar
  16. 16.
    S. I. Vyatkin and B. S. Dolgovesov, “Compression of Geometric Data with the Use of Perturbation Functions,” Avtometriya 54(4), 18–25 (2018) [Optoelectron., Instrum. Data Process. 54 (4), 334–339 (2018)].Google Scholar
  17. 17.
    R. V. Klassen, “Modelling the Effect of the Atmosphere on Light,” ACM Trans. Graph. 6(3), 215–237 (1987).CrossRefGoogle Scholar
  18. 18.
    J. F. Blinn, “Light Reflection Techniques for Simulation of Clouds and Dusty Surfaces,” ACM SIGGRAPH Comp. Graph. 16(3), 21–29 (1982).CrossRefGoogle Scholar
  19. 19.
    K. Perlin, “Improved Noise,” ACM Trans. Graph. 21(3), 681–682 (2002).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations