Advertisement

Real-Time Control of Nonflatness of Components of Infrared-Range Flip-Chip Photodetectors

  • A. R. NovoselovEmail author
  • P. A. Aldokhin
  • A. E. MatochkinEmail author
  • P. P. Dobrovolskii
  • K. P. Shatunov
Physical and Engineering Fundamentals of Microelectronics and Optoelectronics

Abstract

A possibility of using the autocollimation and interference methods for real-time nondestructive check of the wafer nonflatness of photodetector arrays that are sensitive in the infrared range and are fabricated by the flip-chip technology is considered. These methods allow monitoring the wafer nonflatness and the maximum deflections. These methods are applied in the present study to measure the wafer nonflatness of fragments of silicon slices and arrays of photosensitive elements on GaAs substrates, as well as the wafer nonflatness of photodetectors at different stages of fracture and in the course of thermal cycling.

Keywords

photodetector autocollimation method interference method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Novoselov and I. G. Kosulina, “On-Line Method of Flip-Chip Assemblies,” Avtometriya 45(6), 119–122 (2009) [Optoelectron., Instrum. Data Process. 45 (6), 119–122 (2009)].Google Scholar
  2. 2.
    P. Merken, J. Joohn, L. Zimmermann, and C. van Hoof, “Technology for Very Dense Hybrid Detector Arrays Using Electroplatedindium Solder Bumps,” IEEE Trans. Adv. Pack. 26(1), 60–64 (2003).CrossRefGoogle Scholar
  3. 3.
    A. R. Novoselov, I. G. Kosulina, A. G. Klimenko, et al., “Increasing the Mechanical Strength of Hybrid Photodetectors Based on Mercury-Cadmium-Telluride Heteroepitaxial Layers,” Avtometriya 49(1), 111–118 (2013) [Optoelectron., Instrum. Data Process. 49 (1), 94–100 (2013)].Google Scholar
  4. 4.
    L. A. Novitskii and I. G. Kozhevnikov, Thermophysical Properties of Materials at Low Temperatures (Mashinostroenie, Moscow, 1975) [in Russian].Google Scholar
  5. 5.
    M. Greiner, M. Davis, J. Devitt, et al., “State of the Art in Large Format IR FPA Development at CMC Electronics Cinncinati,” Proc. SPIE 5074, 60–71 (2003).CrossRefGoogle Scholar
  6. 6.
    N. M. Sirotkina and N. S. Sirotkina, “Calculation of Internal Stresses in Coatings on the Basis of the Two-Layer Beam Bending Theory,” Matem. Mekhan., No. 4, 222–229 (2002).Google Scholar
  7. 7.
    T. Clyne, “Residual Stresses in Surface Coatings and their Effects on Interfacial Debonding,” Key Eng. Mater. 116–117, 307–330 (1996).Google Scholar
  8. 8.
    Z. Yu. Gotra, Technology of Microelectronic Devices: Reference Book (Radio Svyaz, Moscow, 1991) [in Russian].Google Scholar
  9. 9.
    G. V. Kreopalova, N. L. Lazareva, and D. T. Puryaev, Optical Measurements (Mashinostroenie, Moscow, 1987) [in Russian].Google Scholar
  10. 10.
    V. A. Afanas’ev, Optical Measurements (Vysshaya Shkola, Moscow, 1981) [in Russian].Google Scholar
  11. 11.
    Optical Shop Testing, Ed. by D. Malacara (John Wiley and Sons, Hoboken-New Jersey, 2007).Google Scholar
  12. 12.
    D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Dekker, 1998), pp. 169–245.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Design and Technology Institute of Applied Microelectronics, Novosibirsk Department of the Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations