Gigahertz MEMS Clock Generator

  • E. G. KostsovEmail author
  • A. A. Sokolov
Physical and Engineering Fundamentals of Microelectronics and Optoelectronics


An intensely developing aspect of advanced microelectronics is microelectromechanical systems (MEMS). The present paper describes various issues associated with the development of a new MEMS clock generator capable of operating at gigahertz frequencies. The main features of generating and supporting forced oscillations of the moving electrode under the action of electrostatic forces are analyzed. A possibility of supporting such oscillations under conditions of high inertial g-loads (up to 106g and more) is demonstrated. A mathematical model of a micro-oscillator is developed, and the basic regimes of its operation are described.


MEMS clock generator self-supported oscillations stable limiting cycle mathematical model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. T. M. van Beek and R. Puers, “A Review of MEMS Oscillators for Frequency Reference and Timing Applications,” J. Micromech. Microeng. 22(1), 013001 (2012).CrossRefGoogle Scholar
  2. 2.
    Ch. Zuo, J. van der Spiegel, and G. Piazza, “1.05 GHz MEMS Oscillator Based on Lateral-Field-Excited Piezoelectric AlN Resonators,” in Proc. of the Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (EFTF-IFCS 2009), Besancon, France, April 20–24, 2009, pp. 381–384.Google Scholar
  3. 3.
    D. Weinstein and S. A. Bhave, “Internal Dielectric Transduction of a 4.5 GHz Silicon Bar Resonator,” in IEEE International Electron Devices Meeting, Washington, USA, December 10–12, 2007, pp. 415–418.Google Scholar
  4. 4.
    X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A Self-Sustaining Ultrahigh-Frequency Nanoelectromechanical Oscillator,” Nature Nanotechnology 3(6), 342–346 (2008).CrossRefGoogle Scholar
  5. 5.
    B. Kim, Ch. M. Jha, T. White, et al., “Temperature Dependence of Quality Factor in MEMS Resonators,” J. Microelectromech. Syst. 17, 755–766 (2008).CrossRefGoogle Scholar
  6. 6.
    J. L. Lopez, J. Verd, J. Teva, et al., “Integration of RF-MEMS Resonators on Submicrometric Commercial CMOS Technologies,” J. Micromech. Microeng. 19, 015002 (2009).CrossRefGoogle Scholar
  7. 7.
    E. G. Kostsov, “Electromechanical Energy Conversion in the Nanometer Gaps,” Proc. SPIE 7025, 70251G (2008).CrossRefGoogle Scholar
  8. 8.
    I. L. Baginsky and E. G. Kostsov, “High Energy Output MEMS Based on Thin Layers of Ferroelectric Materials,” Ferroelectrics 351(1), 69–78 (2007).CrossRefGoogle Scholar
  9. 9.
    E. G. Kostsov and A. A. Sokolov, “Fast-Response Electrostatic Actuator Based on Nano-Gap,” Micromachines 8(78), 2–7 (2017).Google Scholar
  10. 10.
    E. G. Kostsov and S. I. Fadeev, “New Microelectromechanical Cavities for Gigahertz Frequencies,” Avtometriya 49(2), 115–122 (2013) [Optoelectron., Instrum. Data Process. 49 (2), 204–210 (2013)].Google Scholar
  11. 11.
    A. A. Andronov, A. A. Vitte, and S. E. Khaikin, Theory of Oscillations (GIFML, Moscow, 1959) [in Russian].Google Scholar
  12. 12.
    Ya. B. Zel’dovich and A. D. Myshkis, Elements of Applied Mathematics (Nauka, Moscow, 1965), pp. 242–284 [in Russian].Google Scholar
  13. 13.
    I. L. Baginsky and E. G. Kostsov, “Reversible High Speed Electrostatic ‘Contact’,” Semiconductors 44(13), 1654–1657 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Jia, X. Li, Zh. Song, et al., “Micro-Cantilever Shocking-Acceleration Switches with Threshold Adjusting and On-State Latching Functions,” J. Micromech. Microeng. 17(3), 567–575 (2007).CrossRefGoogle Scholar
  15. 15.
    H. Takamatsu and T. Sugiura, “Nonlinear Vibration of Electrostatic MEMS under DC and AC Applied Voltage,” in Proc. of the Intern. Conf. on MEMS, NANO and Smart Systems (ICMENS 2005), Banff, Canada, July 24–27, 2005, pp. 423–424.Google Scholar
  16. 16.
    Ya. S. Grinberg, Yu. A. Pashkin, and E. V. Il’ichev, “Nanomechanical Resonators,” Usp. Fiz. Nauk 182(4), 407–436 (2012).CrossRefGoogle Scholar
  17. 17.
    X. M. H. Huang, Ch. A. Zorman, M. Mehregany, and M. L. Roukes, “Nanoelectromechanical Systems: Nanodevice Motion at Microwave Frequencies,” Nature 421(6922), 496–497 (2003).CrossRefGoogle Scholar
  18. 18.
    K. L. Ekincia and M. L. Roukes, “Nanoelectromechanical Systems,” Rev. Sci. Instrum. 76, 061101 (2005).CrossRefGoogle Scholar
  19. 19.
    S. E. Lyshevski, Nano- and Microelectromechanical Systems (CRC Press, Boca Raton-London-New York, 2001).Google Scholar
  20. 20.
    Y. Jang, S. Kang, H. Ch. Kim, and K. Chun, “An RF MEMS Switch with a Differential Gap between Electrodes for High Isolation and Low Voltage Operation,” Micromech. Microeng. 21(7), 1–9 (2011).CrossRefGoogle Scholar
  21. 21.
    S. Y. No and F. Ayazi, “The HARPSS Process for Fabrication of Nano-Precision Silicon Electromechanical Resonators,” in Proc. of the 1st IEEE Conf. on Nanotechnology, Mauli, USA, October 30–31, 2001, pp. 489–494.Google Scholar
  22. 22.
    E. G. Kostsov, A. I. Skurlatov, and A. M. Shcherbachenko, “Optoelectronic System for Studying Nanodisplacements of Moving MEMS Elements,” Avtometriya 54(4), 92–100 (2018) [Optoelectron., Instrum. Data Process. 54 (4), 397–404 (2018)].Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations