Elements of the Terahertz Power Reflective Optics with Free-Form Surfaces

  • A. N. AgafonovEmail author
  • B. A. Knyazev
  • V. S. Pavel’ev
  • E. I. Akhmetova
  • V. I. Platonov
Physical and Engineering Fundamentals of Microelectronics and Optoelectronics


Micromilling technologies are used to design and experimentally study terahertz power reflective optical elements with free-form surfaces. The results of the experimental study are in good agreement with theoretical estimates. It is shown that the technique used in this paper makes it possible to develop terahertz focusing reflective elements with energy efficiency above 94%.


terahertz radiation free-form optical elements triangulation milling G code 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. N. Kulipanov, E. G. Bagryanskaya, E. N. Chesnokov, et al., “Novosibirsk Free Electron Laser—Facility Description and Recent Experiments,” IEEE Trans. Terahertz Sci. Technol. 5(5), 798–809 (2015).CrossRefGoogle Scholar
  2. 2.
    E. D. Walsby, S. Wang, J. Xu, et al., “Multilevel Silicon Diffractive Optics for Terahertz Waves,” J. Vac. Sci. Technol. B 20(6), 2780–2783 (2002).CrossRefGoogle Scholar
  3. 3.
    W. D. Furlan, V. Ferrando, J. A. Monsoriu, et al., “3D Printed Diffractive Terahertz Lenses,” Opt. Lett. 41(8), 1748–1751 (2016).CrossRefGoogle Scholar
  4. 4.
    A. N. Agafonov, M. G. Vlasenko, B. O. Volodkin, et al., “Diffractive Lenses for High-Power Terahertz Radiation Beams,” Izv. Ros. Akad. Nauk. Ser. Fizicheskaya 77(9), 1330–1332 (2013).Google Scholar
  5. 5.
    A. N. Agafonov, B. O. Volodkin, A. K. Kaveev, et al., “Silicon Diffractive Optical Elements for High-Power Monochromatic Terahertz Radiation,” Avtometriya 49(2), 98–105 (2013) [Optoelectron., Instrum. Data Process. 49 (2), 189–195 (2013)].Google Scholar
  6. 6.
    B. A. Knyazev, V. S. Cherkassky, Yu. Yu. Choporova, et al., “Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application,” J. Infrared Milli Terahz Waves 32(10), 1207–1222 (2011).CrossRefGoogle Scholar
  7. 7.
    D. L. Golovashkin, L. L. Doskolovich, N. L. Kazanskii, et al., Diffraction Computer Optics (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  8. 8.
    A. N. Agafonov, B. O. Volodkin, D. G. Kachalov, et al., “Focusing of Novosibirsk Free Electron Laser (NovoFEL) Radiation into Paraxial Segment,” J. Modern Opt. 63(11), 1051–1054 (2016).CrossRefGoogle Scholar
  9. 9.
    A. N. Agafonov, B. O. Volodkin, S. G. Volotovsky, et al., “Optical Elements for Focusing of Terahertz Laser Radiation in a Given Two-Dimensional Domain,” Opt. Memory Neural Networks (Inform. Opt.) 23(3), 185–190 (2014).CrossRefGoogle Scholar
  10. 10.
    A. N. Agafonov, Yu. Yu. Choporova, A. K. Kaveev, et al., “Control of Transverse Mode Spectrum of Novosibirsk Free Electron Laser Radiation,” Appl. Opt. 54(12), 3635–3639 (2015).CrossRefGoogle Scholar
  11. 11.
    B. A. Knyazev, Yu. Yu. Choporova, M. S. Mitkov, et al., “Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum,” Phys. Rev. Lett. 115(16), 163901 (2015).CrossRefGoogle Scholar
  12. 12.
    A. G. Poleshchuk, V. P. Korolkov, V. P. Veiko, et al., “Laser Technologies in Micro-Optics. Part 2. Fabrication of Elements with a Three-Dimensional Profile,” Avtometriya 54(2), 3–19 (2018) [Optoelectron., Instrum. Data Process.54 (2), 113–126 (2018)].Google Scholar
  13. 13.
    M. S. Komlenok, B. O. Volodkin, B. A. Knyazev, et al., “Designing a Fresnel Terahertz Lens with a Multilevel Microrelief by Femtosecond Laser Ablation,” Kvantovaya Elektronika 45(10), 933–936 (2015).CrossRefGoogle Scholar
  14. 14.
    V. S. Pavelyev, M. S. Komlenok, B. O. Volodkin, et al., “Fabrication of High-Effective Silicon Diffractive Optics for the Terahertz Range by Femtosecond Laser Ablation,” Phys. Procedia 84, 170–174 (2016).CrossRefGoogle Scholar
  15. 15.
    L. Minkevicius, S. Indrišiūnas, and R. Šniaukas, et al., “Terahertz Multilevel Phase Fresnel Lenses Fabricated by Laser Patterning of Silicon,” Opt. Lett. 42(10), 1875–1878 (2017).CrossRefGoogle Scholar
  16. 16.
    T. Blalock, K. Medicus, and J. Nelson, “Fabrication of Freeform Optics,” Proc. SPIE, 9575, 95750H (2015). DOI: Scholar
  17. 17.
    D. G. Makarova, “Criteria for Choosing a Technology for Shaping Optical Surfaces of Lenses for the Submillimeter Range of the Spectrum,” Izv. Vuzov. Priborostroenie 59(2), 159–163 (2016).Google Scholar
  18. 18.
    A. Hansel, K. Yamazaki, and K. Konishi, “Improving CNC Machine Tool Geometric Precision Using Manufacturing Process Analysis Techniques,” Procedia CIRP 14, 263–268 (2014).CrossRefGoogle Scholar
  19. 19.
    V. S. Efremov, R. A. Koryakin, A. V. Logachev, et al., “Reflective Ability of Rough Surfaces in a Submillimiter Spectrum Range,” Interekspo Geo-Sibir’ 5(2), 227–231 (2015).Google Scholar
  20. 20.
    B. C. Routara, A. Bandyopadhyay, and P. Sahoo, “Roughness Modeling and Optimization in CNC End Milling Using Response Surface Method: Effect of Workpiece Material Variation,” Int. J. Adv. Manuf. Technol. 40(11/12), 1166–1180 (2009).CrossRefGoogle Scholar
  21. 21.
    T. Grimm, User’s Guide to Rapid Prototyping (Society of Manufacturing Engineers, Dearborn, 2004).Google Scholar
  22. 22.

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. N. Agafonov
    • 1
    • 2
    Email author
  • B. A. Knyazev
    • 3
    • 4
  • V. S. Pavel’ev
    • 1
    • 2
  • E. I. Akhmetova
    • 1
  • V. I. Platonov
    • 1
  1. 1.Samara National Research UniversitySamaraRussia
  2. 2.Institute of Image Processing Systems, Russian Academy of Sciences — Department of the Federal Scientific Research Center “Crystallography and Photonics”Russian Academy of SciencesSamaraRussia
  3. 3.Budker Institute of Nuclear Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations