Advertisement

X-ray Diffraction Tomography Using Laboratory Sources for Studying Single Dislocations in a Low Absorbing Silicon Single Crystal

  • D. A. ZolotovEmail author
  • V. E. Asadchikov
  • A. V. Buzmakov
  • I. G. D’yachkova
  • Yu. S. Krivonosov
  • F. N. Chukhovskii
  • E. V. Suvorov
Physical and Engineering Fundamentals of Microelectronics and Optoelectronics

Abstract

This paper is a continuation of previous studies on the development of X-ray topo-tomography using laboratory equipment. The results on the spatial location of a single polygonal dislocation half-loop in a silicon single crystal were obtained as a result of testing the sensitivity of the X-ray topo-tomo diffractometer. A comparison was made with high-resolution experimental data obtained at the European synchrotron radiation facility (ESRF). The experimental procedure, software, and hardware for 3D reconstruction of the investigated single defect — a polygonal dislocation half-loop — are described.

Keywords

X-ray topography X-ray tomography single dislocation half-loops algebraic reconstruction techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Baruchel, M. Di Michiel, T. Lafford, et al., “Synchrotron X-ray Imaging for Crystal Growth Studies,” C. R. Phys. 14(2/3), 208–220 (2013).CrossRefGoogle Scholar
  2. 2.
    D. K. Bowen and B. K. Tanner, High Resolution X-ray Diffractometry and Topography (Nauka, St. Petersburg, 2002; Taylor & Francis, 2005).Google Scholar
  3. 3.
    A. Authier, Dynamic Theory of X-ray Diffraction (Oxford Univ. Press, New York, 2001).Google Scholar
  4. 4.
    D. R. Black and G. G. Long, X-ray Topography. Material Science and Engineering Laboratory, Special publ. 960-10 (Washington, 2004).Google Scholar
  5. 5.
    I. L. Shul’pina and I. A. Prokhorov, “X-ray Diffraction Topography in Physical Materials Science,” Kristallografiya 57(5), 740–749 (2012).Google Scholar
  6. 6.
    A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).zbMATHGoogle Scholar
  7. 7.
    W. Ludwig, P. Cloetens, J. Hartwig, et al., “Three-Dimensional Imaging of Crystal Defects by ‘Topo-Tomography’,” J. Appl. Cryst. 34, 602–607 (2001).CrossRefGoogle Scholar
  8. 8.
    D. Hänschke, L. Helfen, V. Altapova, et al., “Three-Dimensional Imaging of Dislocations by X-ray Diffraction Laminography,” Appl. Phys. Lett. 101, 244103 (2012).CrossRefGoogle Scholar
  9. 9.
    D. Hänschke, A. Danilewsky, L. Helfen, et al., “Correlated Three-Dimensional Imaging of Dislocations: Insights into the Onset of Thermal Slip in Semiconductor Wafers,” Phys. Rev. Lett. 119, 215504.Google Scholar
  10. 10.
    Y. Epelboin, “Simulation des Trajets des Champs D’ondes Dans un Cristal Contenant une Dislocation,” Acta Cryst. A31, 591–600 (1975).CrossRefGoogle Scholar
  11. 11.
    I. S. Besedin, F. N. Chukhovskii, and V. E. Asadchikov, “Study of the Diffraction Contrast of Dislocations in X-ray Topo-Tomography: A Computer Simulation and Image Analysis,” Kristallografiya 59(3), 365–373 (2014).Google Scholar
  12. 12.
    D. A. Zolotov, A. V. Buzmakov, D. A. Elfimov, et al., “The Possibility of Identifying the Spatial Location of Single Dislocations by Topo-Tomography on Laboratory Setups,” Kristallografiya 62(1), 12–16 (2017).Google Scholar
  13. 13.
    V. Asadchikov, A. Buzmakov, F. Chukhovskii, et al., “X-ray Topo-Tomography Studies of Linear Crystals in Silicon Single Crystals,” J. Appl. Cryst. 51(6), 1616–1622 (2018).CrossRefGoogle Scholar
  14. 14.
    V. N. Erofeev, V. I. Nikitenko, V. I. Polovinkina, et al., “X-ray Diffraction Contrast and Geometry of Dislocation Half-Loops in Silicon,” Kristallografiya 16(1), 190–198 (1971).Google Scholar
  15. 15.
    W. Van Aarle, W. J. Palenstijn, J. Cant, et al., “Fast and Flexible X-ray Tomography using the ASTRA Toolbox,” Opt. Express. 24(22), 25129–25147 (2016).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • D. A. Zolotov
    • 1
    Email author
  • V. E. Asadchikov
    • 1
    • 2
  • A. V. Buzmakov
    • 1
  • I. G. D’yachkova
    • 1
  • Yu. S. Krivonosov
    • 1
  • F. N. Chukhovskii
    • 1
  • E. V. Suvorov
    • 3
  1. 1.Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research CentreRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations