Implementation of Terahertz High-Pass Filters Based on All-Metal Microstructures using Deep X-ray Lithography

  • A. N. GentselevEmail author
  • S. A. Kuznetsov
  • F. N. Dultsev
  • B. G. Goldenberg
  • A. G. Zelinsky
  • V. I. Kondratyev
  • D. S. Tanygina
Physical and Engineering Fundamentals of Microelectronics and Optoelectronics


A method for fabricating high-pass terahertz quasi-optical filters in the form of thick (up to 1 mm in thickness) self-bearing copper microstructures of subwavelength topology is described. This method is based on forming a high-aspect-ratio mask of SU-8 resist on a silicon wafer via deep X-ray lithography through a tungsten X-ray mask followed by electroplating a copper layer through the resistive mask. An example of a 212-µm thick structure with a cutoff frequency of 0.42 THz having the geometry of hexagon-shaped through-holes arranged on a triangular lattice is considered. The results of broadband THz characterization and electromagnetic analysis of the structure fabricated are presented.


deep X-ray lithography LIGA technology microstructures quasi-optical filters terahertz range 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was carried out using the infrastructure of the Shared Research Center (SRC) “Siberian Synchrotron and Terahertz Radiation Centre” (SSTRC BINP SB RAS) operating on basis of the accelerator complex VEPP-3/VEPP-4M.


  1. 1.
    L. Yun-Shik, Principles of THz Science and Technology (Springer Science and Business Media, N. Y., 2009).Google Scholar
  2. 2.
    K.-E. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging Vol. 171 (Springer-Verlag, Berlin — Heidelberg, 2013).CrossRefGoogle Scholar
  3. 3.
    H.-J. Song and T. Nagatsuma, Handbook of Terahertz Technologies: Devices and Applications (Pan Stanford Publishing Pte. Ltd, Singapore, 2015).CrossRefGoogle Scholar
  4. 4.
    S. S. Dhillon, M. S. Vitiello, E. H. Linfield, et al., “The 2017 Terahertz Science and Technology Roadmap,” J. Phys. D: Appl. Phys. 50(4), 043001 (2017).CrossRefGoogle Scholar
  5. 5.
    S. A. Kuznetsov, M. A. Astafyev, A. V. Gelfand, and A. V. Arzhannikov, “Microstructured Frequency Selective Quasi-Optical Components for Submillimeter-Wave Applications,” in Proc. of the 44th Eur. Microwave Conf. (EuMC 2014), Rome, Italy, 6–9 Oct., 2014.Google Scholar
  6. 6.
    S. A. Kuznetsov, A. V. Arzhannikov, and V. V. Kubarev, et al., “Development and Characterization of Quasi-Optical Mesh Filters and Metastructures for Subterahertz and Terahertz Applications,” Key Eng. Mat. 437, 276–280 (2010).CrossRefGoogle Scholar
  7. 7.
    M. Aznabet, M. Navarro-Cia, S. A. Kuznetsov, et al., “Polypropylene-Wafer-Based SRR- and CSRR-Metasurfaces for Submillimeter Waves,” Opt. Express. 16(22), 18312–18319 (2008).CrossRefGoogle Scholar
  8. 8.
    S. A. Kuznetsov and A. V. Gel’fand, “Investigation of Spectral Characteristics for Microstructured Quasi-Optical Bandpass Subteraherz Filters,” Russian Physics J. 58(11), 1605–1612 (2015).CrossRefGoogle Scholar
  9. 9.
    S. A. Kuznetsov, M. A. Astafev, M. Beruete, and Cia M. Navarro, “Planar Holographic Metasurfaces for Terahertz Focusing,” Sci. Reports. 5, 7738 (2015).CrossRefGoogle Scholar
  10. 10.
    S. A. Kuznetsov, A. G. Paulish, M. Navarro-Cia, and A. V. Arzhannikov, “Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers, Sci. Reports. 6, 21079 (2016).CrossRefGoogle Scholar
  11. 11.
    S. A. Kuznetsov, V. V. Kubarev, P. V. Kalinin, et al., “Development of Metal Mesh Based Quasi-Optical Selective Components and Their Application in High-Power Experiments at Novosibirsk Terahertz FEL,” in Proc. of the 29th Intern. Free Electron Laser Conf. (FEL 2007), Novosibirsk, Russia, 26–31 Aug., 2007.Google Scholar
  12. 12.
    S. A. Kuznetsov, B. G. Goldenberg, P. V. Kalinin, et al., “Development of Copper Meshes for Frequency and Spatial Selection of the Terahertz Radiation of the Novosibirsk Free Electron Laser,” J. Surface Investigation 3(5), 691–701 (2009).CrossRefGoogle Scholar
  13. 13.
    S. A. Kuznetsov, A. N. Gentselev, B. G. Goldenberg, et al., “Elaboration of Microstructured Subterahertz Filters via LIGA Technology and Investigation of Their Selective Properties,” Vestnik Nov. Gos. Univ. Ser. Fizika 7(4), 25–42 (2012).Google Scholar
  14. 14.
    S. A. Kuznetsov, A. N. Gentselev, and S. G. Baev, “Implementation of High-Pass Subterahertz Filters Using High-Aspect-Ratio Polimeric Structures,” Avtometriya 53(1), 107–116 (2017) [Optoelectron. Instrum. Data Process. 53 (1), 88–95 (2017)].Google Scholar
  15. 15.
    A. N. Gentselev, S. A. Kuznetsov, S. G. Baev, et al., “Fabrication of Quasi-Optical Selective Elements for the Terahertz Range in the Form of Pseudometallic Structures via Deep X-ray Lithography,” J. Surface Investigation 11(4), 710–720 (2017).CrossRefGoogle Scholar
  16. 16.
    R. Ruprecht and W. Bacher, Untersuchungen an mikrostrukturierten Bandpassfiltern fuer das Ferne Infrarot und ihre Herstellung durch Roentgentiefenlithographie und Mikrogalvanoformung, KfK Report 4825 (Kernforschungszentrum, Karlsruhe, 1991).Google Scholar
  17. 17.
    V. Nazmov, E. Reznikova, L. Y. Mathis, et al., “Bandpass Filters Made by LIGA for the THz Region: Manufacturing and Testing,” Nucl. Instr. Meth. Phys. Res. A. 603(1–2), 150–152 (2009).CrossRefGoogle Scholar
  18. 18.
    V. Pacheco-Peca, N. Engheta, S. Kuznetsov, et al., “Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).CrossRefGoogle Scholar
  19. 19.
    V. Saile, U. Wallrabe, O. Tabata, and J. G. Korvink, LIGA and Its Applications, Vol. 7 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).Google Scholar
  20. 20.
    H. H. Gatzen, V. Saile, and J. Leuthold, Micro and Nano Fabrication: Tools and Processes (Springer-Verlag, Berlin — Heidelberg, 2015).CrossRefGoogle Scholar
  21. 21.
    B. G. Goldenberg, A. G. Lemzyakov, V. P. Nazmov, and V. F. Pindyurin, “Multifunctional X-ray Lithography Station at VEPP-3,” Phys. Procedia 84, 205–212 (2016).CrossRefGoogle Scholar
  22. 22.
    A. N. Gentselev, A. G. Zelinsky, and V. I. Kondratyev, RF Pat. 2421833. Metal Grid Structure and Its Design Method. Publ. 2011, Bul. No. 17, 942.Google Scholar
  23. 23.
    E. F. Reznikova, J. Morh, and H. Hein, “Deep Photo-Lithography Characterization of SU-8 Resist Layers,” Microsyst. Technol. 11(4/5), 282–291 (2005).CrossRefGoogle Scholar
  24. 24.
    D. S. Fischl and D. W. Hes, “Plasma-Enhanced Etching of Tungsten and Tungsten Silicide in Chlorine-Containing Discharges,” J. Electrochem. Soc. 134(9), 2265–2268 (1987).CrossRefGoogle Scholar
  25. 25.
    P. Verdonck, J. Swart, G. Brasseur, and P. Geyter, “Analysis of the Etching Mechanisms of Tungsten in Fluorine Containing Plasma,” J. Electrochem. Soc. 142(6), 1971–1976 (1995).CrossRefGoogle Scholar
  26. 26.
    A. V. Arzhannikov, A. V. Burdakov, V. S. Burmasov, et al., “Observation of Spectral Composition and Polarization of Sub-Terahertz Emission from Dense Plasma During Relativistic Electron Beam-Plasma Interaction,” Phys. Plasmas. 21(8), 082106 (2014).CrossRefGoogle Scholar
  27. 27.
    A. V. Arzhannikov, A. V. Burdakov, V. S. Burmasov, et al., “Dynamics and Spectral Composition of Subterahertz Emission from Plasma Column Due to Two-Stream Instability of Strong Relativistic Electron Beam,” IEEE Trans. THz Sci. Tech. 6(2), 245–252 (2016).CrossRefGoogle Scholar
  28. 28.
    A. V. Arzhannikov, A. V. Burdakov, V. S. Burmasov, et al., “Microwave Generation During 100 keV Electron Beam Relaxation in GOL-3,” Fus. Sci. Tech. 63(1T), 286–288 (2013).CrossRefGoogle Scholar
  29. 29.
    A. N. Gentselev, F. N. Dultsev, V. I. Kondratyev, and A. G. Lemzyakov, “Formation of Thick High-Aspect-Ratio Resistive Masks by the Contact Photolithography Method,” Avtometriya 54(2), 20–29 (2018) [Optoelectron. Instrum. Data Process. 54 (2), 127–134 (2018)].Google Scholar
  30. 30.
    G. Gruener, Millimeter and Submillimeter Wave Spectroscopy of Solids, Vol. 74 (Springer-Verlag, Berlin-Heidelberg, 1998).CrossRefGoogle Scholar
  31. 31.
    ANSYS Corp., Inc. 2019.
  32. 32.
    M. A. Ordal, L. L. Long, R. J. Bell, et al., “Optical Properties of the Metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the Infrared and Far Infrared,” Appl. Opt. 22(7), 1099–1119 (1983).CrossRefGoogle Scholar
  33. 33.
    S. A. Kuznetsov, A. V. Arzhannikov, and M. K. A. Tumm, “Peculiarities of Electromagnetic Waves Diffraction on Regular-Periodic Inductive Metallic Structures,” Vestn. Nov. Gos. Univ. Ser. Fizika 8(4), 11–24 (2013).Google Scholar
  34. 34.
    C. Winnewisser, F. Lewen, H. Helm, “Transmission Characteristics of Dichroic Filters Measured by THz Time-Domain Spectroscopy,” App. Phys. A. 66(6), 593–598 (1998).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. N. Gentselev
    • 1
    Email author
  • S. A. Kuznetsov
    • 1
    • 2
    • 3
  • F. N. Dultsev
    • 3
    • 4
  • B. G. Goldenberg
    • 1
  • A. G. Zelinsky
    • 5
  • V. I. Kondratyev
    • 1
  • D. S. Tanygina
    • 2
    • 6
  1. 1.Budker Institute of Nuclear Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk Department of Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of Sciences, “Design and Technology Institute of Applied Microelectronics”NovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  5. 5.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  6. 6.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations