Simulation of the Spatial Distribution of the Local Quantum Efficiency and Photoelectric Characteristics of Photodiode-Based Infrared Focal Plane Arrays

  • V. G. Polovinkin
  • V. A. Stuchinsky
  • A. V. Vishnyakov
  • I. I. LeeEmail author
Modeling in Physical and Technical Research


The results of calculation of the spatial distribution of the local quantum efficiency over the area of photodiode-based IR focal plane arrays (IR FPA) are presented. The diffusion of photogenerated charge carriers in the absorber layer of the array was calculated by Monte-Carlo simulation. Methods of reducing the amount of necessary calculations based on using the symmetry properties of the array are discussed. Requirements for the photoelectric and design parameters (absorber-layer thickness, chargecarrier diffusion length and optical absorption length in this layer, the ratio of the size of n–p junctions to the geometrical dimensions of the detector pixels) are formulated that ensure the threshold sensitivity and spatial resolution of IR FPAs.


infrared focal plane array (IR FPA) photodiode detector local quantum efficiency spatial resolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Rogalski, Infrared Detectors (Nauka, Novosibirsk, 2003) [Russian translation].Google Scholar
  2. 2.
    A. Rogalski, “Competitive Technologies for Third Generation Infrared Photon Detectors,” Proc. SPIE. 6206, 62060S (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. M. Filachev, I. I. Taubkin, and M. A. Trishenkov, Solid State Electronics. Photodiodes (Fizmatkniga, Moscow, 2011) [in Russian].Google Scholar
  4. 4.
    Focal Plane Arrays Based on the Mercury–Cadmium–Telluride Epitaxial System, Ed. by A. L. Aseev (Izd. Sib. Otdel Ross. Akad. Nauk, Novosibirsk, 2012) [in Russian].Google Scholar
  5. 5.
    J. P. Lavine, W.-Ch. Chang, K. Anagnostopoulos, et al., “Monte Carlo Simulation of the Photoelectron Crosstalk in Silicon Imaging Devices,” IEEE Trans. Electron Dev. ED-32 (10), 2087–2090 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    R. M. Fastow, A. Strum, “Monte Carlo Simulations of the Cross Talk in InSb Matrices,” Proc. SPIE 2274, 136–146 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Vishnyakov, V. A. Stuchinsky, D. V. Brunev, et al., “Analysis of Charge-Carrier Diffusion in the Photosensing Films of HgCdTe Infrared Focal Plane Array Photodetectors,” J. Appl. Phys. 118 (12), 124508 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Juravel, A. Strum, A. Fenigstein, et al., “The Transition to Second-Generation HgCdTe FPA,” Proc. SPIE 3061, 652–661 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    V. G. Polovinkin, V. A. Stuchinsky, A. V. Vishnyakov, and I. I. Lee, “Monte-Carlo Simulation of the Photoelectric Characteristics of IR FPAs,” DAN VSh RF 4 (37), 79–90 (2017).Google Scholar
  10. 10.
    V. A. Stuchinsky and A. V. Vishnyakov, “A Simple Approach to the Monte Carlo Simulation of Diffusion of Photogenerated Carriers Charge in Diode-Based Photodetectors and Some Applications of This Approach,” in Proc. XXV Intern. Scientific and Technical Conference on Photoelectronics and Night Vision Devices (Orion Research and Production Association, Moscow, 2018), 2, 430–433.Google Scholar
  11. 11.
    A. V. Predein, Yu. G. Sidorov, I. V. Sabinina, et al., “High-Performance 320 × 256 Long-Wavelength Infrared Photodetector Arrays Based on CdHgTe Layers Grown by Molecular Beam Epitaxy”, Avtometriya 49 (5), 78–85 (2013) [Optoelectron., Instrum. Data Process. 49 (5), 485–491 (2013)].Google Scholar
  12. 12.
    V. N. Vasil’ev, I. Yu. Dmitriev, B. N. Brazhnikov, et al., “Comparative Analysis of Methods for Measuring the Parameters of TDI FPA,” Uspekhi Prikl. Fiz. 3 (5), 486–495 (2015).Google Scholar
  13. 13.
    M. Vallone, M. Goand, F. Bertazzi, et al., “Diffusive-Probalistic Model for Inter-Pixel Crosstalk in HgCdTe Focal Plane Arrays,” IEEE J. Electron Dev. Soc. 6, 664–673 (2018). DOI: 10.1109/JEDS.2018.2835818CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. G. Polovinkin
    • 1
    • 2
  • V. A. Stuchinsky
    • 1
  • A. V. Vishnyakov
    • 1
  • I. I. Lee
    • 1
    Email author
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations