Advertisement

Advanced Design of Scanning Infrared Focal Plane Arrays

  • S. A. Dvoretskii
  • A. P. Kovchavtsev
  • I. I. LeeEmail author
  • V. G. Polovinkin
  • G. Yu. Sidorov
  • M. V. Yakushev
Optical Information Technologies

Abstract

Modern designs of time delay and integration (TDI) IR linear scanning focal plane arrays (IR FPAs) are analyzed. Advanced designs of linear IR FPAs with increased sensitivity and spatial resolution are proposed. The analysis is based on Monte-Carlo simulation of the diffusion of photogenerated charge carriers in photodiode arrays based on mercury–cadmium–telluride epitaxial layers taking into account the main photoelectric and design parameters of the detectors and optical system.

Keywords

scanning IR FPA photodiode local quantum efficiency point source threshold sensitivity spatial resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Date Sheet. PLUTON LW 288×4-MCT. The Worldwide Reference for 2nd gen. Scanning Systems. https://doi.org/www.sofradir.com/product/pluton-lw.
  2. 2.
    F. F. Sisov, V. P. Reva, A. G. Colenkov, et al., “4 × 288 Readouts and FPAs Properties,” Opto-Electron. Rev. 14 (1), 76–83 (2006).ADSGoogle Scholar
  3. 3.
    K. O. Boltar, I. D. Burlakov, A. M. Filachev, and N. I. Yakovleva, “A 6 × 576 FPA for the Spectral Range of 8–12 µm,” Prikladnaya Fizika, No. 3, 61–65 (2011).Google Scholar
  4. 4.
    K. V. Kozlov, V. N. Solyakov, V. A. Streltsov, et al., “Analysis and Classification of the Detector Array Topologies in Multirow FPAs,” Uspekhi Prikladnoi Fiziki 5 (6), 574–584 (2017).Google Scholar
  5. 5.
    K. V. Kozlov, A. I. Patrashin, I. D. Burlakov, et al., “Modern Scanning Infrared FPAs for Remote Sensing (A Review),” Uspekhi Prikladnoi Fiziki 5 (1), 63–78 (2017).Google Scholar
  6. 6.
    R. M. Fastow and A. Strum, “Monte Carlo Simulations of the Cross Talk in InSb Matrices,” Proc. SPIE. 2274, 136–146 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Juravel, A. Strum, A. Fenigstein, et al., “The Transition to Second-Generation HgCdTe FPA,” Proc. SPIE 3061, 652–661 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    V. G. Polovinkin, V. A. Stuchinsky, A. V. Vishnyakov, and I. I. Lee, “Monte-Carlo Simulation of the Photoelectric Characteristics of IR FPAs,” DAN VSh RF 4 (37), 79–90 (2017).Google Scholar
  9. 9.
    V. G. Polovinkin, V. A. Stuchinsky, A. V. Vishnyakov, and I. I. Lee, “Simulation of the Spatial Distribution of the Quantum Efficiency of Photodiode Arrays and Photoelectric Characteristics of Photodiode Infrared Focal Plane Arrays,” Avtometriya 54 (6), 114–121 (2018) [Optoelectron., Instrum. Data Process. 54 (6), (2018)].Google Scholar
  10. 10.
    V. G. Polovinkin, V. A. Stuchinsky, A. V. Vishnyakov, and I. I. Lee, “Photoelectric Characteristics of IR FPAs with Honeycomb Layout of the Detector Array in Detection of Point Sources of Light,” in Proc. XXV Intern. Scientific and Technical Conference and Workshop on Photoelectronics and Night Vision Devices (Orion Research and Production Association, Moscow, 2018), Vol. 1, pp. 111–114.Google Scholar
  11. 11.
    V. G. Polovinkin, V. A. Stuchinsky, A. V. Vishnyakov, and I. I. Lee, “Photoelectric Characteristics of IR FPAs in Detecting Point Sources of Light,” in Proc. XXV Intern. Scientific and Technical Conference and Workshop on Photoelectronics and Night Vision Devices (Orion Research and Production Association, Moscow, 2018), Vol. 1, pp. 115–118.Google Scholar
  12. 12.
    Focal Plane Arrays Based on the Mercury–Cadmium–Telluride Epitaxial System, Ed. by A. L. Aseev (Izd. Sib. Otdel Ross. Akad. Nauk, Novosibirsk, 2012) [in Russian].Google Scholar
  13. 13.
    M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1965; Nauka, Moscow, 1973).Google Scholar
  14. 14.
    V. A. Ivanov, V. S. Kirichuk, V. P. Kosykh, and V. V. Sinel’shchikov, “Specific Features of Detecting Point Objects in Images Formed by a Detector Array,” Avtometriya 52 (2), 10–19 (2016) [Optoelectron., Instrum. Data Process. 52 (2), 113–120 (2016)].Google Scholar
  15. 15.
    S. Schacham and E. Finkman, “Recombination Mechanisms in p-type HgCdTe: Freezeout and Background Flux Effects,” J. Appl. Phys. 57 (6), 2001–2009 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. A. Dvoretskii
    • 1
  • A. P. Kovchavtsev
    • 1
  • I. I. Lee
    • 1
    Email author
  • V. G. Polovinkin
    • 1
    • 2
  • G. Yu. Sidorov
    • 1
  • M. V. Yakushev
    • 1
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations