Multichannel Confocal Microscope Based on a Diffraction Focusing Multiplier with Automatic Synchronization of Scanning

  • V. P. BessmeltsevEmail author
  • M. V. Maksimov
  • V. V. Vileiko
  • N. V. Goloshevskii
  • V. S. Terent’ev
Optical Information Technologies


Implementation of a laser scanning confocal microscope is described, where the specimen is scanned by an array of illuminating beams, which significantly increases the velocity of object image construction. The array formation is provided by using a diffractive optical element. Scanning by the array of laser beams over the specimen is performed by galvanometric scanners with moving refractive plane-parallel plates. Owing to application of such a scanning device, the beams in the illuminating channel and the signal beams in the receiving channel pass through one motionless array of confocal diaphragms; as a result, the scanning beams in the specimen plane and the signal beams in the plane of the photodetector matrix can be used without an additional synchronized pair of scanners. The proposed confocal microscope can be applied in problems that require a fast response.


multichannel confocal microscope diffractive optical element shifted plane-parallel plates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer US, Boston, 2006).CrossRefGoogle Scholar
  2. 2.
    G. M. Svishchev, Confocal Microscopy and Ultramicroscopy of a Living Cell (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  3. 3.
    Equipment Catalogue. NS-3000 High-Speed Laser Confocal 3D Microscope.
  4. 4.
    M. Ishihara and H. Sasaki, “High-Speed Surface Measurement Using a Non-Scanning Multiple-Beam Confocal Microscope,” Opt. Eng. 38 (6), 1035–1040 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    V. P. Bessmeltsev, P. S. Zavyalov, V. P. Korolkov, et al., “Diffractive Focusing Fan-Out Element for the Parallel DNA Sequencer,” Avtometriya 53 (5), 48–56 (2017) [Optoelectron., Instrum. Data Process. 53 (5), 457–465 (2017)].Google Scholar
  6. 6.
    M. C. Krantz, “Conventional and Confocal Multi-Spot Scanning Optical Microscope,” US Patent No. 6248988 B1, Publ. 19.06.2001.Google Scholar
  7. 7.
    J. Karin and M. Golub, “Confocal Microscope with Diffractively Formed Virtual Pinhole Array,” US Patent No. 0051976 A1, Publ. 18.03.2004.Google Scholar
  8. 8.
    T. Shimozawa, K. Yamagata, T. Kondo, et al., “Improving Spinning Disk Confocal Microscopy by Preventing Pinhole Cross-Talk for Intravital Imaging,” Proc. Natl. Acad. Sci. USA. 110 (9), 3399–3404 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    V. P. Bessmel’tsev and V. S. Terent’ev, “Calculating the Spatial Fluorescence Distribution of a Thick Fluorophore Layer in a Mutlichannel Confocal Microscope,” Opt. Zh. 82 (6), 58–65 (2015) [J. Opt. Technol. 82, 374–379 (2015)].Google Scholar
  10. 10.
    T. Tanaami, S. Otsuki, N. Tomosada, et al., “High-Speed 1-Frame/ms Scanning Confocal Microscope with a Microlens and Nipkow Disks,” Appl. Opt. 41 (22), 4704–4708 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    W. Vogt, M. Szulczewski, and D. Wolf, “Single and Multi-Aperture, Translationally-Coupled Confocal Microscope,” Patent No. 6856457 B2 US, Publ. 15.02.2005.Google Scholar
  12. 12.
    K. Kagawa, M.-W. Seo, K. Yasutomi, et al., “Multi-Beam Confocal Microscopy Based on a Custom Image Sensor with Focal-Plane Pinhole Array Effect,” Opt. Express 21 (2), 1417–1429 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    A. Tsikouras, R. Berman, D. W. Andrews, and Q. Fang, “High-Speed Multifocal Array Scanning Using Refractive Window Tilting,” Biomed. Opt. Express 6 (10), 3737–3747 (2015).CrossRefGoogle Scholar
  14. 14.
    V. P. Bessmeltsev, V. S. Terent’ev, and M. V. Maksimov, “Multichannel Confocal Microscope,” RF Patent No. 2649045, Publ. 15.03.2018, Bul. No. 8.Google Scholar
  15. 15.
    F. Piccinini, A. Tesei, W. Zoli, and A. Bevilacqua, “Extended Depth of Focus in Optical Microscopy: Assessment of Existing Methods and a New Proposal,” Microscopy Res. Techn. 75 (11), 1582–1592 (2012).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. P. Bessmeltsev
    • 1
    Email author
  • M. V. Maksimov
    • 1
  • V. V. Vileiko
    • 1
  • N. V. Goloshevskii
    • 1
  • V. S. Terent’ev
    • 1
  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations