Advertisement

Russian Aeronautics

, Volume 61, Issue 3, pp 412–419 | Cite as

Mathematical Model of the Flow of a Liquid Film of Variable Thickness on a Flat Surface in a Viscous Gas Flow

  • N. I. Klyuev
  • K. A. PolyakovEmail author
Aero- and Gas-Dynamics of Flight Vehicles and Their Engines
  • 12 Downloads

Abstract

The paper presents a mathematical model of the film flow over a half-plane directed at an angle to the horizon. In the cross section of the film, a quadratic law for the longitudinal velocity distribution is adopted, taking into account friction on the film surface. An approximate solution of the problem is obtained in the form of a series in powers of the small parameter. The solution is presented in the form of graphs of the film thickness and the average longitudinal velocity along the length of the plate.

Keywords

film liquid boundary layer flow friction small parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    López, J., Pineda, H., Bello, D., and Ratkovich, N., Study of Liquid-Gas Two-Phase Flow in Horizontal Pipes Using High Speed Filming and Computational Fluid Dynamics, Experimental Thermal and Fluid Science, 2016, vol. 76, pp. 126–134.CrossRefGoogle Scholar
  2. 2.
    Lu, H., Lu, L., Luo, Y., and Qi, R., Investigation on the Dynamic Characteristics of the Counter-Current Flow for Liquid Desiccant Dehumidification, Energy, 2016, vol. 101, pp. 229–238.CrossRefGoogle Scholar
  3. 3.
    Li, M., Lu, Y., Zhang, S., and Xiao, Y., A Numerical Study of Effects of Counter-Current Gas Flow Rate on Local Hydrodynamic Characteristics of Falling Films over Horizontal Tubes, Desalination, 2016, vol. 383, pp. 68–80.CrossRefGoogle Scholar
  4. 4.
    Klyuev, N.I., Gimadiev, A.G., and Kryukov, Yu.A., Two-Media Boundary Layer on a Flat Plate, International Journal of Engineering and Technology, 2014, vol. 6, no. 5, pp. 2368–2374.Google Scholar
  5. 5.
    Klyuev, N.I. and Kryukov, Yu.A., Influence of Fluid Film on Friction of a Flat Plate, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 4, pp. 33–35 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 4, pp. 372–377].Google Scholar
  6. 6.
    Camassa, R. and Ogrosky, H.R., On Viscous Film Flows Coating the Interior of a Tube: Thin-Film and Long -Wave Models, Journal of Fluid Mechanics, 2015, vol. 772, pp. 569–599.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Muramatsu, K., Youn, Y., Han, Y., Hasegawa, Y., and Shikazono, N., Numerical Study on the Effect of Initial Flow Velocity on Liquid Film Thickness of Accelerated Slug Flow in a Micro Tube, International Journal of Heat and Fluid Flow, 2015, vol. 54, pp. 77–86.CrossRefGoogle Scholar
  8. 8.
    Shkadov, V.Ya., Two-Parametric Model of Wave Flow Regimes of Viscous Liquid Films, Vestnik Moskovskogo Universiteta. Seriya 1: Matematika. Mekhanika, 2013, no. 4, pp. 24–31.Google Scholar
  9. 9.
    Laptev, A.G., Bazhirov, T.S., and Saitbatalov, M.V., Model of the Hydrodynamic Characteristics of Film Flow, Vestnik KGEU, 2010, no. 3(6), pp. 18–23.Google Scholar
  10. 10.
    Kholpanov, L.P. and Shkadov, V.Ya., Gidrodinamika i teplomassoobmen s poverkhnost’yu razdela (Hydrodynamics and Heat Mass Transfer with Interface), Moscow: Nauka, 1990.Google Scholar
  11. 11.
    Prokudina, L.A., Modelling the Influence of Temperature Gradients on the State of a Free Liquid Surface. Vestnik YuUrGU. Seriya: Matematicheskoe Modelirovanie i Programmirovanie, 2014, vol. 7, no. 2, pp. 118–123.zbMATHGoogle Scholar
  12. 12.
    Beloglazkin, A.N. and Shkadov, V.Ya., Nonlinear Waves in a Liquid Film–Gas Flow System, Izv. RAN. Mekhanika Zhidkosti i Gaza, 2012, no. 6, pp. 32–49 [Fluid Dynamics (Engl. Transl.), vol. 47, no. 6, pp. 709–724].MathSciNetzbMATHGoogle Scholar
  13. 13.
    Nikolaev, N.A., Voinov, N.A., Mikhalkin, A.S., and Nikolaev, A.N., The Dynamics of Film Flow in Channels of Large-Scale Roughness at High Reynolds Numbers, Izv. RAN. Energetika, 2008, no. 5, pp. 61–64.Google Scholar
  14. 14.
    Mikhalkina, G.S. and Nikolaev, N.A., Regulations of the Dispersed-Annular Flow of Two-Phase Flux in Industrial Stream Generators, Izv. Vuz. Problemy Energetiki, 2007, nos. 9–10, pp. 20–26.Google Scholar
  15. 15.
    Voinov, N.A., Sugak, E.V., and Voinova, O.V., Fluid Flow and Heat Transfer in a Film Flowing over the Surface of the Pipe with Helical Roughness, Teploenergetika, 2004, no. 3, pp. 39–43.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Samara State Technical UniversitySamaraRussia

Personalised recommendations