Russian Aeronautics

, Volume 61, Issue 3, pp 404–411 | Cite as

Aerodynamic Characteristics of Thin Cylindrical and Conical Shells in the Incompressible Flow

  • V. T. Kalugin
  • A. Yu. Lutsenko
  • D. K. NazarovaEmail author
Aero- and Gas-Dynamics of Flight Vehicles and Their Engines


The paper presents aerodynamic characteristics of thin cylindrical and conical shells in the incompressible flow. Experimental data and results of numerical simulation in the OpenFoam software are compared. It is shown that the aerodynamic characteristics of the thin shells differ from the aerodynamic characteristics of the corresponding solid bodies and depend on the shell geometry parameters.


conical and cylindrical shells aerodynamic characteristics detachable sections payload fairing launch vehicle OpenFoam incompressible flow internal cavity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Savkina, N.V., Bimatov, V.I., and Khristenko, Yu.F., Calculation of the Flow and Aerodynamic Characteristics of a Sharp Cone Based on the Direct Problem on Nonlinear Aeroballistics, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2014, no. 1(27), pp. 110–116.Google Scholar
  2. 2.
    Kovalenko, V.V., Kravtsov, A.N., and Mel’nichuk, T.Yu., Supersonic Drag of Nose Cones, Uchenye Zapiski TsAGI, 2011, vol. 42, no 1, pp. 31–36.Google Scholar
  3. 3.
    Toukir, I. and Rakibul, H.S.M., Experimental and Numerical Investigation of Flow over a Cylinder at Reynolds Number 105, J. of Modern Science and Technology, 2013, vol. 1, no. 1, pp. 52–60.Google Scholar
  4. 4.
    Lysenko, D.A., Ertesvag, I.S., and Rian, K.E., Modeling of Turbulent Separated Flows Using OpenFoam, Computers and Fluids, 2013, vol. 80, pp. 408–422.CrossRefzbMATHGoogle Scholar
  5. 5.
    Gubaidullin, D.A., Morenko, I.V., and Fedyaev, V.L., Heat Transfer of a Circular Cylinder in Suspension Flow, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 3, pp. 99–101 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 3. pp. 351–354].Google Scholar
  6. 6.
    Bel’chikhina, A.A., Dolzhenko N.N., and Dubov, Yu.B., Aerodynamic Performance of Flat Plates of Various Forms at the Angle of Attack From Zero to 85°, Trudy TsAGI, 1987, no. 2339, pp. 3–8.Google Scholar
  7. 7.
    Ortiz, X., Rival, D., Wood, D., Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades, Energies, 2015, vol. 8, no. 4, pp. 2438–2453.CrossRefGoogle Scholar
  8. 8.
    Popov, S.A., Gueraiche, D., and Kuznetsov, A.V., Experimental Study of the Aerodynamics of a Wing with Various Configurations of Wingtip Triangular Extension, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 3, pp. 76–79 [Russian Aeronautics (Engl. Transl.), 2016, vol. 59, no. 3, pp. 376–380].Google Scholar
  9. 9.
    Lee, T., Impact of Gurney Flaplike Strips on the Aerodynamic and Vortex Flow Characteristic of a Reverse Delta Wing, J. of Fluids Engineering, 2016, vol. 138(6).Google Scholar
  10. 10.
    Cosyn, P. and Vierendeels, J., Numerical Investigation of Low-Aspect-Ratio Wings at Low Reynolds Numbers, Journal of Aircraft, 2006, vol. 43, no. 3, pp. 713–722.CrossRefGoogle Scholar
  11. 11.
    Breuer, M., Jovicic, N., and Mazaev, K., Comparison of DES, RANS and LES for the Separated Flow Around a Flat Plate at High Incidence, Int. J. for Numerical Methods in Fluids, 2003, vol. 41, no. 4, pp. 357–388.CrossRefzbMATHGoogle Scholar
  12. 12.
    Breuer, M. and Jovicic, N., Separated Flow Around a Flat Plate at High Incidence: an LES Investigation, Journal of Turbulence, 2001, vol. 2, pp. 1–15.CrossRefGoogle Scholar
  13. 13.
    Bezmenova, T.N., Golovkin, M.A., Gorban’, V.P., Dmitrieva, V.B., Simuseva, Ye.V., Stratonovich, A.N., and Yakovlev, V.A., Visualization of Unstable Structures of Rectangular Wings Flow at Low Flow Rates, Trudy TsAGI, 1987, vol. 2239, pp. 9–19.Google Scholar
  14. 14.
    Neiland, V.Ya., Stolyarov, G.I., and Tabachnikov, V.G., The Effect of Thickness Ratio of a Rectangular Wing of Small Aspect Ratio and Small Reynolds Number on the Modes of the Flow Structure Adjustment, Uchenye Zapiski TsAGI, 1985, vol. 16, no. 3, pp. 1–10.Google Scholar
  15. 15.
    Petrov, K.P., Aerodinamika tel prosteiyshikh form (Aerodynamics of the Simplest Shape Bodies), Moscow: Faktorial, 1998.Google Scholar
  16. 16.
    Lutsenko, A.Yu., Nazarova, D.K., and Fomin, M.A., Aerodynamic Characteristics of Thin Conical Shells at Supersonic Speeds of the Ram Airflow, Inzhenerhyi Zhurnal: Nauka i Innovatsii, 2017, no. 4(64), pp. 1–11.Google Scholar
  17. 17.
    Dyad’kin, A.A., Krylov, A.N., Lutsenko, A.Yu., Mikhailova, M.K., and Nazarova, D.K., Aerodynamics Specifics of Thin-Walled Structures, Kosmicheskaya Tekhnika i Tekhnologii, 2016, no. 3(14), pp. 15–25.Google Scholar
  18. 18.
    Dyad’kin, A.A., Lutsenko, A.Yu., and Nazarova, D.K., Numerical Simulation of Subsonic and Transonic Flow around Thin Shells, Nauchnyi Vestnik MGTU GA, 2016, no. 223(1), pp. 45–50.Google Scholar
  19. 19.
    Golubev, A.G., Epikhin, A.S., Kalugin, V.T., Lutsenko, A.Yu., Moskalenko, V.O., Stolyarova, E.G., Khlupnov, A.I., and Chernukha, P.A., Aerodinamika (Aerodynamics), Moscow: BMSTU, 2017.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. T. Kalugin
    • 1
  • A. Yu. Lutsenko
    • 1
  • D. K. Nazarova
    • 1
    Email author
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations