Advertisement

Russian Aeronautics

, Volume 61, Issue 3, pp 384–390 | Cite as

Reliability Providing Approach for Structurally- Parametrical Optimization Results of an “Aggressive” Intermediate Duct of the Bypass Gas-Turbine Engine

  • K. A. VinogradovEmail author
  • A. E. Remizov
  • O. V. Vinogradova
Aero- and Gas-Dynamics of Flight Vehicles and Their Engines
  • 5 Downloads

Abstract

Limit assessment for the new optimization approach is carried out. This approach allows us to optimize the gas turbine duct elements by using the structural analysis and computational fluid dynamics methods, and to minimize the necessary number of CFD computations. Obtained results were verified and confirmed by experimental aerodynamic investigation.

Keywords

intermediate duct optimization structural analysis computational fluid dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bez’azychnyi, V.F., Vinogradova, O.V., and Shishkin, V.N., Algoritmizatsiya protsessov proektirovaniya proizvodstva i kontrolya v aviadvigatelestrienii (Algorithmization of Production Design and Control Processes in Aircraft Engine Building), Rybinsk: RGATA, 2007.Google Scholar
  2. 2.
    Vinogradov, K.A., The Certificate on State Registration of the Computer Program, no. 2014617912, 2014.Google Scholar
  3. 3.
    Bogomolov, E.N., Burov, M.N., and Remizov, A.E., Study of Gas Flow Characteristics in GTE Interturbine Diffuser, Izv. Vuz. Av. Tekhnika, 1995, vol. 38, no. 4, pp. 84–87 [Russian Aeronautics (Engl. Transl.), vol. 38, no. 4, pp. 78–81].Google Scholar
  4. 4.
    Bogomolov, E.N., Characteristics of Turbine-to-Turbine Adapter Profiling, Izv. Vuz. Av. Tekhnika, 1996, vol. 39, no. 3, pp. 72–77 [Russian Aeronautics (Engl. Transl.), vol. 39, no. 3, pp. 69–74].Google Scholar
  5. 5.
    Vinogradov, K.A. and Remizov, A.E., Application of the Structural-Parametric Analysis Methods to the Task of Intraturbine Transition Duct Meridional Surface Profiling, Vestnik RGATU im. P.A. Solov’eva, 2012, no. 2 (23), pp. 114–119.Google Scholar
  6. 6.
    Sovran, G. and Klomp, E.D., Experimentally Determined Optimum Geometries for Rectilinear Diffuser with Rectangular, Conical or Annular Cross-Section, in Fluid Mechanics of Internal Flow, N.Y: Elsevier Applied Science, 1967, pp. 270–319.Google Scholar
  7. 7.
    Howard, J.H., Thornton-Trump, A.B., and Henseler, H.J., Performance and Flow Regimes for Annular Diffusers, New York: ASME, 1967.Google Scholar
  8. 8.
    Göttlich, E., Malzacher, F., Heitmeir, F., and Marn, A., Adaptation of a Transonic Test Turbine Facility for Experimental Investigation of Aggressive Intermediate Turbine Duct Flows, Proc. 17th International Symposium on Air Breathing Engines, Munich, Germany: American Institute of Aeronautics and Astronautics, 2005, AIAA 2005–1132, pp. 2023–2029.Google Scholar
  9. 9.
    Menter, F.R., A Comparison of Some Recent Eddy-Viscosity Turbulence Models, Journal of Fluids Engineering, 1996, vol. 118, no. 3, pp. 514–519.CrossRefGoogle Scholar
  10. 10.
    Marn, A., Göttlich, E., Cadrecha, D., and Pirker, H.P., Shorten the Intermediate Turbine Duct Length by Applying an Integrated Concept, Proc. ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, 2008, vol. 6: Turbomachinery, Parts A, B, and C, paper no. GT2008-50269, pp. 1041–1051.CrossRefGoogle Scholar
  11. 11.
    Vinogradov, K.A., Vinogradova, O.V., Remizov, A.E., and Kuznetsov, S.P., Development of the Geometry Optimization Technology for “Aggressive” Intermidiate Turbine Duct by Means of Structurally-Parametrical Analysis and CFD, Vestnik PNIPU. Aerokosmicheskaya Tekhnika, 2014, no. 38, pp. 32–47.Google Scholar
  12. 12.
    Vinogradov, K.A., Improving the Efficiency of the Gas Turbine by Optimizing the Parametric Structure of the Shape of Transition Channel and Film Cooling Holes, Cand. Sc. (Tech.) Dissertation, Rybinsk: RGATU, 2015.Google Scholar
  13. 13.
    Remizov, A.E. and Karelin, O.O., Energy Losses in the Annular Diffuser at the Radius-Variable Inlet Flow Swirling, Izv. Vuz. Av. Tekhnika, 2010, vol. 53, no. 3, pp. 32–34 [Russian Aeronautics (Engl. Transl.), vol. 53, no. 3, pp. 289–294].Google Scholar
  14. 14.
    Grigor’ev, V.A., Kalabukhov, D.S., and Rad’ko, V.M., Application of Neural Network Approximation Methods in the Generalization and Presentation of the Aircraft Gas Turbine Engine Turbomachinery Characteristics, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 1, pp. 39–43 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 1, pp. 48–53].Google Scholar
  15. 15.
    Shablii, L.S. and Dmitrieva, I.B., Blade Geometry Transformation in Optimization Problems from the Point Cloud to the Parametric Form, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 44–48 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 3, pp. 276–282].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • K. A. Vinogradov
    • 1
    Email author
  • A. E. Remizov
    • 2
  • O. V. Vinogradova
    • 1
  1. 1.NPO SaturnRybinskRussia
  2. 2.Soloviev Rybinsk State Aviation Technical UniversityRybinskRussia

Personalised recommendations