Advertisement

Russian Aeronautics

, Volume 61, Issue 3, pp 379–383 | Cite as

Development of Algorithms for Integration and Reconfiguration of the Flight Control System and Interfaces

  • A. V. Efremov
  • M. S. Tyaglik
  • A. S. Tyaglik
  • I. Kh. Irgaleev
Flight Dynamics and Control of Flight Vehicles
  • 5 Downloads

Abstract

The integration potentiality is considered for the flight control system and interface algorithms to provide the flight accuracy and safety of highly augmented aircraft in the case of low maximum elevator rate limit and in the case of failures causing its sharp decrease.

Keywords

pilot–aircraft system semiautomatic control manual control predictive display 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aerodinamika, ustoychivost’ i upravlyaemost’ sverkhzvukovykh samoletov (Aerodynamics, Stability and Controllability of Surersonic Aircraft), Byushgens, G.S., et al., Eds., Moscow: RAN, 1998.Google Scholar
  2. 2.
    McRuer, D.T. et al., Aviation Safety and Pilot Control: Understanding and Preventing Unfavorable Pilot-Vehicle Interactions, Washington, D.C.: National Academy Press, 1997.Google Scholar
  3. 3.
    Aleshin, B.S., Bazhenov, S.G., Didenko, Yu.I., et al., Sistemy distantsionnogo upravleniya magistral’nykh samoletov (Remote Control Systems for Airliners), Moscow: Nauka, 2013.Google Scholar
  4. 4.
    Garkushenko, V.I. and Vinogradov, S.S., Improvement of Handling Qualities for the Aircraft Longitudinal Motion, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 4, pp. 46–51 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 4, pp. 489–494].Google Scholar
  5. 5.
    Gus’kov, Yu.P. and Zagainov, G.I., Upravlenie poletom samoletov (Aircraft Flight Control), Moscow: Mashinostroenie, 1980.Google Scholar
  6. 6.
    Efremov, A.V. and Ogloblin, A.V., Development and Application of the Methods for Pilot-Aircraft System Research to the Manual Control Tasks of Modern Vehicle, Proc. AGARD Conference on Dual Usage of Military and Commercial Technology in Guidance and Control, Neuilly-sur-Seine Cedex, France, 1995, no. 556, pp. 15.1–15.12.Google Scholar
  7. 7.
    Efremov, A.V., Rodchenko, V.V., and Boris, S., Investigation of Pilot Induced Oscillation Tendency and Prediction Criteria Development, Final Report WL-TR-96-3109, Wright Lab USA, 1996.Google Scholar
  8. 8.
    Bjorkman, E., Silverthorn, J., and Calico, R., Flight Test Evaluation of Techniques to Predict Longitudinal Pilot Induced Oscillations, Proc. Astrodynamics Conference, Williamsburg, 1986, pp. 967–979.Google Scholar
  9. 9.
    Theunissen, E., Sennes, U., and Sachs, G., Predictive Flightpath Displays for Improved Manual Control Performance, Proc. 22nd Congress of Int. Council of the Aeronautical Sciences, Harrogate, UK, 2000, Paper ICAS 2000–6.9.3, pp. 693.1–693.10.Google Scholar
  10. 10.
    Sachs, G., Perspective Predictor/Flight–Path Display with Minimum Pilot Compensation, Journal of Guidance, Control, and Dynamics, 2000, vol. 23, no. 3, pp. 420–429.CrossRefGoogle Scholar
  11. 11.
    Efremov, A.V., Tyaglik, M.S., Irgaleev, I.Kh., and Gorbatenko, S.A., Predictive Information Design for the Novel Generation of Display for the Highly-Augmented Aircraft, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 2, pp. 87–92 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 2, pp. 257–262.Google Scholar
  12. 12.
    Efremov A.V. and Tyaglik M.S., The Development of Perspective Displays for Highly Precise Tracking Tasks, Aerospace Guidance, Navigation and Control, Selected Papers of the 1st CEAS Specialist Conference on Guidance, Navigation and Control, Germany, Springer, 2011, pp. 163–174.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Efremov
    • 1
  • M. S. Tyaglik
    • 1
  • A. S. Tyaglik
    • 1
  • I. Kh. Irgaleev
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations