Advertisement

Russian Aeronautics

, Volume 61, Issue 3, pp 371–378 | Cite as

Aircraft Trajectory Control at the Motion on the Predetermined Route Based on the Global Navigation Satellite System

  • V. V. ErokhinEmail author
Flight Dynamics and Control of Flight Vehicles
  • 4 Downloads

Abstract

An algorithm to control the aircraft trajectory is proposed. This algorithm is based on the dynamic stochastic systems optimal control theory. The optimal control implementation is shown to reduce the deviation of the controlled trajectory from the predetermined one. The optimal control is based on estimating phase coordinates with the high accuracy by the global navigation satellite system.

Keywords

free routing trajectory navigation optimal control Kalman filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The 2013–2028 Global Air Navigation Plan. Doc 9750–AN/963, Canada, Montréal: ICAO, 2013.Google Scholar
  2. 2.
    Maolaaisha, A., Free-Flight Trajectory Optimization by Mixed Integer Programming, Master of Science Thesis, Hamburg, Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg, 2015.Google Scholar
  3. 3.
    Rubén, Antón Guijarro, Commercial Aircraft Trajectory Optimization Using Optimal Control, Bachelor Thesis, Madrid, Universidad Carlos III de Madrid, 2015.Google Scholar
  4. 4.
    Toratani, D., Study on Simultaneous Optimization Method for Trajectory and Sequence of Air Traffic Management, Doctoral Thesis, Yokohama: Yokohama National University, 2016.Google Scholar
  5. 5.
    Sage, A.P. and White, C.C., Optimum Systems Control, London: Prentice-Hall, 1977.zbMATHGoogle Scholar
  6. 6.
    Stratonovich, R.L., Uslovnye markovskie protsessy i ikh primenenie k teorii optimal’nogo upravleniya (Conventional Markov Processes and Their Application to the Optimal Control Theory), Moscow: MGU, 1966.Google Scholar
  7. 7.
    Tikhonov, V.I. and Kharisov, V.N., Statisticheskii analiz i sintez radoitekhnicheskikh ustroistv i system (Statistical Analysis and Synthesis of Radio Devices and Systems), Moscow: Radio i Svyaz’, 1991.Google Scholar
  8. 8.
    Averkiev, N.F., Vlasov, S.A., Salov, V.V., and Kiselev, V.V., Route Optimization of the Aircraft Flight, Izv. Vuz. Av. Tekh., 2016, vol. 59, no. 4, pp. 33–37 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 4, pp. 474–479].Google Scholar
  9. 9.
    Kudryavtsev, D.Yu., Aminev, D.A., and Sviridov, A.S., Computationally Effective Mathematical Model of Airplane Flight, Izv. Vuz. Av. Tekh., 2016, vol. 59, no. 3, pp. 45–51 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 3, pp. 344–350].Google Scholar
  10. 10.
    Andreev, K.V., Khoroshen’kikh, S.N., and Moiseev, G.V., Flight Path Optimization for an Electronic Intelligence Unmanned Aerial Vehicle, Izv. Vuz. Av. Tekh., 2015, vol. 58, no. 1, pp. 14–18 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 1, pp. 15–20].Google Scholar
  11. 11.
    Kiselev, V.Yu. and Monakov, A.A., Aircraft Trajectory Prediction in Air Traffic Control Systems, Informatsionno-Upravlyashchie Sistemy, 2015, no. 4(77), pp. 33–40.CrossRefGoogle Scholar
  12. 12.
    Nuic, A., User Manual for the Base of Aircraft Data (BADA). Revision 3.12, Eurocontrol Experimental Centre, EEC Note no. 10/04, 2014.Google Scholar
  13. 13.
    Yarlykov, M.S., Statisticheskaya teoriya radionavigatsii (Statistical Radio Navigation Theory), Moscow: Radio i Svyaz’, 1985.Google Scholar
  14. 14.
    Solov’ev, Yu.A., Sistemy sputnikovoi navigatsii (Airborne Satellite Navigation Equipment), Moscow: Eko-Trendz, 2000.Google Scholar
  15. 15.
    GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Construction and Function Principles), Perov, A.I. and Kharisov, V.N., Eds., Moscow: Radiotekhnika, 2010.Google Scholar
  16. 16.
    Yarlykov, M.S., Bogachev, A.S., Merkulov, V.I., and Drogalin, V.V., Radioelektronnye kompleksy navigatsii, pritselivaniya i upravleniya vooruzheniem letatel’nykh apparatov (Radioelectronic Suites for Navigation, Targeting and Control of Aircraft), Moscow: Radiotekhnika, 2012, vol. 1. Fundamental theory.Google Scholar
  17. 17.
    Bukov, V.N., Adaptivnye prognoziruyushchie sistemy upravleniya poletom (Adaptive Predicting Flight Control Systems), Moscow: Nauka, 1987.Google Scholar
  18. 18.
    Degtyarev, G.L. and Sirazetdinov, T.K., Teoreticheskie osnovy optimal’nogo upravleniya uprugimi kosmicheskimi apparatami (Fundamental Theory to Optimal Control of Elastic Spacecraft), Moscow: Mashinostroenie, 1986.Google Scholar
  19. 19.
    Degtyarev, G.L., and Rizaev, I.S., Sintez lokal’no-optimal’nykh algoritmov upravleniya letatel’nymi apparatami (Synthesis of Local-Optimal Algorithms for Flight Vehicle Control), Moscow: Mashinostroenie, 1991.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Irkutsk Branch of Moscow State Technical University of Civil AviationIrkutskRussia

Personalised recommendations