Russian Aeronautics

, Volume 61, Issue 3, pp 363–370 | Cite as

Influence of Interference Effects of the Rotor on the Launch Dynamics of Gliding Unmanned Aerial Vehicle

  • V. T. GrumondzEmail author
  • A. S. Al’bokrinova
  • S. V. Noskov
Flight Dynamics and Control of Flight Vehicles


A mathematical model of the gliding unmanned aerial vehicle (UAV) motion is performed taking into account the interference effect of the main rotor on the UAV. Calculated values are presented for the interference addition to the aerodynamic coefficients of forces and moments on the UAV path section close to the carrier. The problems of stabilization and control are solved, providing stability of the UAV motion at the launch with due account of the aerodynamic interference and the effect of short-term upper stage engine operation, as well as a safe distance between the carrier and the UAV during their simultaneous motion.


gliding unmanned aerial vehicle mathematical model of motion interference effect of the main rotor thrust eccentricity critical angle of eccentricity stabilization safety of the launch 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pravidlo, M.N., Belyaev, A.N., and Kosarev, A.V., Modeling of Single-Stage Built-in Ejection Launch System, Vestnik MAI, 2013, vol. 20, no. 3, pp. 7–18.Google Scholar
  2. 2.
    Grumondz, V.T. and Yakovlev, G.A., Algoritmy aerogidroballisticheskogo proektirovaniya (Algorithms of Aero-and Hydroballistic Design), Moscow: MAI, 1994.Google Scholar
  3. 3.
    Solovei, E.Ya. and Khrapov, A.V., Dinamika sistem navedeniya upravlyaemykh bomb (Dynamics of Bomb Guidance Systems), Moscow: Mashinostroenie, 2006.Google Scholar
  4. 4.
    Grumondz, V.T. and Polishchuk, M.A., Guidance of Gliding Unmanned Aerial Vehicle to a Moving Target, Vestnik MAI, 2014, vol. 21, no. 4, pp. 7–12.Google Scholar
  5. 5.
    Grumondz, V.T., Polishchuk, M.A., and Chertoryzhskaya, S.S., Choice of Aerodynamic and Dynamic Design of Unmanned Gliding Aerial Vehicle, Vestnik MAI, 2012, vol. 19, no. 4, p. 5–12.Google Scholar
  6. 6.
    Grumondz, V.T. and Polishchuk, M.A., Dynamics of Controlled Descent in the Atmosphere of an Unmanned Gliding Aerial Vehicle with a Large Wing Extension, Trudy XI Vserossiiiskogo s”ezda po fundamental’nym problemam teoreticheskoi i prikladnoi mekhaniki (Proc. XI All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics), Kazan: KPFU, 2015, pp. 1083–1085.Google Scholar
  7. 7.
    Lebedev. A.A. and Chernobrovkin, L.S., Dinamika poleta bespilotnykh letatel’nykh apparatov (Flight Dynamics of Unmanned Aerial Vehicles), Moscow: Oborongiz, 1962.Google Scholar
  8. 8.
    Grumondz, V.T., Karpezhnikov, E.I., Polishchuk, M.A., and Polishchuk, M.V., Algorithms of Constructing the Regions of Initial States for Unmanned Winged Gliders, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 4, pp. 51–58 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 4, pp. 534–541].Google Scholar
  9. 9.
    Afanas’ev, V.A., Degtyarev, G.L., and Meschchanov, A.S., Formation of Programmed Spatial Flight Trajectories of Unmanned Aerial Vehicles, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 3, pp. 29–37 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 3, pp. 349–357].Google Scholar
  10. 10.
    Gomzin, A.V., Fesenko, E.V., and Shataev, V.G., Spiral Descent of an Unmanned Aerial Vehicle. Izv. Vuz. Av. Tekhnika, 2009, vol. 52, no. 3, pp. 12–16 [Russian Aeronautics (Engl. Transl.), vol. 52, no. 3, pp. 277–283].Google Scholar
  11. 11.
    Al’bokrinova, A.S. and Grumondz, V.T., Gliding Unmanned Aerial Vehicle Flight Dynamics at Low Speed and Launch Altitudes, Vestnik MAI, 2017, vol. 24, no. 2, pp. 79–85.Google Scholar
  12. 12.
    Kanevskii, M.I. and Smirnov, V.Yu., Process of Launch of Suspended Objects under Conditions of Non-Stationary Aerodynamic Loading, Ustanovki i sistemy upravleniya aviatsionnym vooruzheniem (Installations and Control Systems of Aircraft Weapons), Moscow: VVIA im. N.E. Zhukovskogo, 1994, pp. 98–102.Google Scholar
  13. 13.
    Pravidlo, M.N. and Vatolin, V.V., Complex Criteria of Safety Assessment of Launch of Aircraft Guided Missiles from the Aircraft, Trudy VII Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Problemy sovershenstvovaniya robototekhnicheskikh i intellektual’nykh sistem letatel’nykh apparatov” (Proc. VII All-Russian Scientific and Technical Conference “Problems of Improvement of Robotic and Intelligent Systems of Aircraft”), Moscow: MAI, 2005, pp. 73–76.Google Scholar
  14. 14.
    Pravidlo, M.N., Arkhipova, A.V., Lyubovskii, I.E., and Ivashchenko, O.V., Development of Methods and PC Implementation of Aerodynamic Interference Additives Allocation, Materialy 3-i nauchno-prakticheskoi konferentsii “Issledovaniya i perspektivnye razrabotki v aviatsionnoi promyshlennosti” (Proc. 3rd Scientific-Practical Conference “Research and Promising Developments in the Aviation Industry”), Moscow: OKB Sukhogo, 2005, pp. 260–264.Google Scholar
  15. 15.
    Afanas’ev, V.A., Degtyarev, G.L., Meschchanov, A.S., and Sirazetdinov, T.K., Study of Space Rocket Dynamics, Control and Stabilization at Starting from an Accelerator–Aircraft, Izv. Vuz. Av. Tekhnika, 2006, vol. 49, no. 3, pp.17–22 [Russian Aeronautics (Engl. Transl.), vol. 49, no. 3].Google Scholar
  16. 16.
    Lesieutre, D.J., Dillenius, M.F.E., and Gjestvang, J.A., Store Separation Simulation of the Penguin Missile from Helicopters, Proc. of the Symposium on Innovative Missile Systems, RTO-MP-AVT-135, Paper 9, pp. 9–1–9–18, Neuilly-sur-Seine, France: RTO.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. T. Grumondz
    • 1
    Email author
  • A. S. Al’bokrinova
    • 1
  • S. V. Noskov
    • 2
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Sukhoi Design BureauMoscowRussia

Personalised recommendations