Advertisement

Russian Aeronautics

, Volume 61, Issue 3, pp 340–346 | Cite as

Nonlinear Fracture Resistance Parameters for Elements of Aviation Structures under Biaxial Loading

  • V. N. Shlyannikov
  • A. P. ZakharovEmail author
  • A. V. Tumanov
Structural Mechanics and Strength of Flight Vehicles
  • 6 Downloads

Abstract

This study is concerned with practical application of nonlinear deformation and fracture resistance parameters for residual durability estimation of the fuselage elements with operation damage. By means of numerical calculations for the fragment of fuselage skin with central crack the governing parameters of the elastic-plastic crack-tip stress field are determined as a function of biaxial loading. Two variants of modeling of the crack-tip stress field were performed for the panel of homogeneous isotropic material and a set of the special cohesive elements. As a result the assessment of the biaxial loading influence of fracture damage zone state on crack tip stress field in fuselage panel is given.

Keywords

plastic factor of the stress intensity biaxial loading crack cohesive model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klochkov, Yu.V., Nikolaev, A.P., Vakhnina, O.V., and Kiseleva, T.A., Stress-Strain Analysis of a Thin-Shell Part of Fuselage Using a Triangular Finite Element with Lagrange Multipliers, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 3, pp. 20–26 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 3, pp. 316–323].Google Scholar
  2. 2.
    Kovalev, S.P., Nelyub, V.A., and Shelofast, V.V., Multi-Criteria Analysis of Aircraft Structure Fracture, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 9–14 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 370–375].Google Scholar
  3. 3.
    Glushkov, S.V. and Skvortsov, Yu.V., Fracture Mechanics Analysis of Cylindrical Panels with Non-Through Cracks, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 20–22 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 3, pp. 240–244].Google Scholar
  4. 4.
    Zheleznov, L.P., Kabanov, V.V., and Boiko, D.V., Nonlinear Deformation and Stability of Discretely Reinforced Elliptical Cylindrical Shells under Transverse Bending and Internal Pressure, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 2, pp. 8–13 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 2, pp. 118–126].Google Scholar
  5. 5.
    Shlyannikov, V.N., Tumanov, A.V., Zakharov, A.P., and Gerasimenko, A.A., Surface Flaws Behavior under Tension, Bending and Biaxial Cyclic Loading, Int. Journal of Fatigue, 2016, vol. 92, part 2, pp. 557–576.CrossRefGoogle Scholar
  6. 6.
    Shlyannikov, V.N., Nonlinear Stress Intensity Factors in Fracture Mechanics and Their Applications, Procedia Structural Integrity, 2016, vol. 2, pp. 744–752.CrossRefGoogle Scholar
  7. 7.
    Shlyannikov, V.N., Zakharov, A.P., and Yarullin, R.R., Structural Integrity Assessment of Turbine Disk on a Plastic Stress Intensity Factor Basis, Int. Journal of Fatigue, 2016, vol. 92, part 1, pp. 234–245.CrossRefGoogle Scholar
  8. 8.
    Citarella, R. and Apicella, A., Advanced Design Concepts and Maintenance by Integrated Risk Evaluation for Aerostructures, Structural Durability and Health Monitoring, 2006, vol. 2, no. 3, pp. 183–196.Google Scholar
  9. 9.
    ASTM Standard E8-04. Standard Test Method for Tension Testing of Metallic Materials, American Society for Testing and Materials, West Conshohocken: ASTM International, 2004.Google Scholar
  10. 10.
    Barenblatt, G.I., The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1961, vol. 2, no. 4, pp. 3–56 [Advances in Applied Mechanics (Engl. Transl.), 1962, vol. 7, pp. 55–129].Google Scholar
  11. 11.
    Brocks, W., Falkenberg, R., and Scheider, I., Coupling Aspects in the Simulation of Hydrogen-Induced Stress-Corrosion Cracking, Procedia IUTAM, 2012, vol. 3, pp. 11–24.CrossRefGoogle Scholar
  12. 12.
    Needleman, A., An Analysis of Decohesion along an Imperfect Interface, Int. Journal of Fracture, 1990, vol. 42, no. 1, pp. 21–40.CrossRefGoogle Scholar
  13. 13.
    Scheider, I. and Brocks, W., Residual Strength Prediction of a Complex Structure Using Crack Extension Analyses, Engineering Fracture Mechanics, 2009, vol. 76, no. 1, pp. 149–163.CrossRefGoogle Scholar
  14. 14.
    Tvergaard, V. and Needleman, A., Analysis of The Cup-Cone Fracture in a Round Tensile Bar, Acta Metallurgica, 1984, vol. 32, no. 1, pp. 157–169.CrossRefGoogle Scholar
  15. 15.
    ASTM Standard E1820-17. Standard Test Method for Measurement of Fracture Toughness, American Society for Testing and Materials, West Conshohocken: ASTM International, 2017.Google Scholar
  16. 16.
    Shlyannikov, V.N. and Tumanov, A.V., Characterization of Crack Tip Stress Fields in Test Specimens Using Mode Mixity Parameters, Int. Journal of Fracture, 2014, vol. 185, no. 1–2, pp. 49–76.CrossRefGoogle Scholar
  17. 17.
    Shlyannikov, V.N., Tumanov, A.V., and Tartygasheva, A.M., Damage Growth in Fuselage Panels under Biaxial Loading, Trudy Academenergo, 2015, no. 4, p. 54–71.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. N. Shlyannikov
    • 1
    • 2
  • A. P. Zakharov
    • 1
    Email author
  • A. V. Tumanov
    • 1
  1. 1.Kazan Science Center of RASKazanRussia
  2. 2.Tupolev Kazan National Research Technical UniversityKazanRussia

Personalised recommendations