Advertisement

Russian Aeronautics

, Volume 61, Issue 2, pp 279–286 | Cite as

Research on High-Precision Measurement Systems of Modern Aircraft

  • Kai ShenEmail author
  • K. A. Neusypin
  • M. S. Selezneva
  • A. V. Proletarskii
Aircraft Instruments and Instrumentation Computer Complexes
  • 5 Downloads

Abstract

High-precision measurement systems of modern aircraft are studied in this paper. A measurement system with correction in the structure of inertial navigation system is introduced for highprecision aircraft. In the correction algorithms, a linear error model of the navigation system is usually used. With the aim of increasing the accuracy of the navigation system, we propose a nonlinear correction algorithm based on the state dependent coefficient representation of the nonlinear model.

Keywords

measurement system high-precision aircraft inertial navigation system state dependent coefficient representation of nonlinear model control algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avgustov, L.I., Dzhandzhgava, G.I., Babichenko, A.V., Orekhov, M.I., Sukhorukov, S.Ya., and Shkred, V.K., Navigatsiya letatel’nykh apparatov v okolozemnom prostranstve (Navigation of Flying Vehicles in the Near-Earth Space), Moscow: Nauchtekhlitizdat, 2015.Google Scholar
  2. 2.
    Neusypin, K.A., Sovremennye sistemy i metody navedeniya, navigatsii i upravleniya letatel’nymi apparatami (Modern Systems and Methods of Aircraft Guidance, Navigation and Control), Moscow: MGOU, 2009.Google Scholar
  3. 3.
    Shen, Kai, Selezneva, M.S., Neusypin, K.A, and Proletarsky, A.V., Novel Variable Structure Measurement System with Intelligent Components for Flight Vehicles, Metrology and Measurement Systems, 2017, vol. 24, no. 2, pp. 347–356.CrossRefGoogle Scholar
  4. 4.
    Dzhandzhgava, G.I., Golikov, V.P., and Shkred, V.K., Algorithms of Processing the Information of Serial Airplane Platform Inertial Navigation Systems, Aviakosmicheskoe Priborostroenie, 2008, no. 11, pp. 4–12.Google Scholar
  5. 5.
    Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of the Non-Linear Filtration Theory in the Navigation Information Processing Tasks), St.Petersburg: TsNII Elektropribor, 2003.Google Scholar
  6. 6.
    Shakhtarin, B.I., Shen, K., and Neusypin, K.A., Modification of the Nonlinear Kalman Filter in a Correction Scheme of Aircraft Navigation Systems, Radiotekhnika i Elektronika, 2016, vol. 61, no. 11, pp. 1065–1072 [J. of Communications Technology and Electronics (Engl. Transl.), vol. 61, no. 11, pp. 1252–1258].Google Scholar
  7. 7.
    Neusypin K.A. and Proletarskii, A.V., RU patent 2561252, Buyll. Izobr., 2015, no.24.Google Scholar
  8. 8.
    Shen, Kai and Neusypin, K.A., Study of the Criteria for the Degrees of Observability, Controllability and Identifiability of the Linear Dynamical Systems, Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, vol. 17, no. 11, pp. 723–731.CrossRefGoogle Scholar
  9. 9.
    Selezneva, M.S., and Neusypin, K.A., Development of a Measurement Complex with Intelligent Component, Izmeritel’naya Tekhnika, 2016, no. 9, pp. 10–14 [Measurement Techniques (Engl. Transl), 2016, vol. 59, no. 9, pp. 916–922].Google Scholar
  10. 10.
    Neusypin K.A. Proletarskii, A.V., Shen, Kai, Liu, Rongzhong, and Guo, Rui, Aircraft Self-Organization Algorithm with Redundant Trend, Journal of Nanjing University of Science and Technology, 2014, no. 5, pp. 602–607.Google Scholar
  11. 11.
    Afanas’ev, V.N., Upravlenie nelineinymi neopredelennymi dinamicheskimi ob’ektami (Control of the Non-Linear Uncertain Dynamic Objects), Moscow: URSS, 2015.Google Scholar
  12. 12.
    Malkin, I.G., Theory of Stability of Motion, US Atomic Energy Commission, Office of Technical Information, 1952.zbMATHGoogle Scholar
  13. 13.
    Jazwinski, A.H., Stochastic Processes and Filtering Theory, N.Y: Dover Publications, 2007.zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Kai Shen
    • 1
    Email author
  • K. A. Neusypin
    • 1
  • M. S. Selezneva
    • 1
  • A. V. Proletarskii
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations