Advertisement

Russian Aeronautics

, Volume 61, Issue 2, pp 212–219 | Cite as

Improving the Positional Accuracy of the Airborne Vehicle during Its Motion along the Predetermined Path

  • I. N. Rozenberg
  • S. V. Sokolov
  • A. A. BayandurovaEmail author
Flight Dynamics and Control of Flight Vehicles
  • 8 Downloads

Abstract

The method of improving the positional accuracy of the airborne vehicle that moves along a great circle path is considered due to the analytical three-dimensional projection of its current coordinate position, determined from the measurements of the satellite navigation system under the conditions of high-amplitude noise to the true guide path.

Keywords

great circle motion path satellite measurements high-amplitude noise analytical threedimensional projection of coordinate position 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kifana, B.D. and Abdurohman, M., Great Circle Distance Methode for Improving Operational Control System Based on GPS Tracking System, Int. Journal on Computer Science and Engineering, 2012, vol. 4, no. 4, pp. 647–662.Google Scholar
  2. 2.
    Perov, A.I. and Kharisov, V.N., GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Principles of Construction and Operating), Moscow: Radiotekhnika, 2010.Google Scholar
  3. 3.
    Karshakov, E.V., Aircraft Control Algorithms Features in Case of Airborne Surveying, Problemy Upravleniya, 2012, no. 3, pp. 71–76.Google Scholar
  4. 4.
    Sukhomlinov, D.V., Patrikeev, A.P., and Malynkin, K.V., Modern Methods of Realization of Geoinformational Problems on the Board of Aircraft, Nauka i Transport. Grazhdanskaya Aviatsiya, 2012, no. 1, pp. 16–17.Google Scholar
  5. 5.
    Sokolov, S.V., Analytical Models of Spatial Trajectories for Solving Navigation Problems, Prikladnaya Matematika i Mekhanika, 2015, vol. 79, no.1, pp. 24–30 [Journal of Applied Mathematics and Mechanics (Engl. Transl.), 2015, vol. 79, no. 1, pp. 17–22].MathSciNetGoogle Scholar
  6. 6.
    Auzyak, A.G., Budin, V.I., and Dremov, F.V., Mathematical Modeling of an Optimal Controlled Helicopter Flight at Vertical Regimes, Izv. Vuz. Av. Tekhnika, 2010, vol. 53, no. 1, pp. 19–23 [Russian Aeronautics (Engl. Transl.), vol. 53, no. 1, pp. 26–32].Google Scholar
  7. 7.
    Lukasevich, V.I., Pogorelov, V.A., and Sokolov, S.V., Nonlinear Filtering of Vehicle Motion Parameters in an Integrated Navigation System Using Electronic Map Data, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 3, pp. 86–92 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 3, pp. 338–344].Google Scholar
  8. 8.
    Chen, C.L., Liu, P.F., and Gong, W.T., A Simple Approach to Great Circle Sailing: The COFI Method, The Journal of Navigation, 2014, vol. 67, no. 3, pp. 403–418.CrossRefGoogle Scholar
  9. 9.
    Chen, C.L., A Systematic Approach for Solving the Great Circle Track Problems Based on Vector Algebra, Polish Maritime Research, 2016, vol. 23, no. 2, pp. 3–13.CrossRefGoogle Scholar
  10. 10.
    Shcherban’, I.V., Shcherban’, O.G., and Konev, D.S., The Loosely Coupled Integration Method of the Satellite and Microelectromechanical Strapdown Inertial Navigation Systems of the Automotive Vehicle, Mekhatronika, Avtomatizatsiya, Upravlenie, 2015, vol. 16, no. 2, pp.133–139.Google Scholar
  11. 11.
    Tseng, W.K. and Lee, H.S., The Vector Function for Distance Travelled in Great Circle Navigation, The Journal of Navigation, 2007, vol. 60, no. 1, pp. 158–164.CrossRefGoogle Scholar
  12. 12.
    Nastro, V. and Tancredi, U., Great Circle Navigation with Vectorial Methods, The Journal of Navigation, 2010, vol. 63, no. 3, pp. 557–563.CrossRefGoogle Scholar
  13. 13.
    Mashkov, G.M., Borisov, E.G., and Vladyko, A.G., Analysis of Object Positioning Accuracy Provided by Range-Finding Systems of Various Types, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 38–43 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 401–406].Google Scholar
  14. 14.
    Andreev, V.D., Teoriya inertsial’noi navigatsii. Avtonomnye sistemy (Theory of Inertial Navigation. Autonomous Systems), Moscow: Nauka, 1966.Google Scholar
  15. 15.
    Ishlinskii, A.Yu., Orientatsiya, giroskopy i inertsial’naya navigatsiya (Orientation, Gyroscopes and Inertial Navigation), Moscow: Nauka, 1976.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • I. N. Rozenberg
    • 1
  • S. V. Sokolov
    • 1
  • A. A. Bayandurova
    • 2
    Email author
  1. 1.Rostov State Transport UniversityRostov-on-DonRussia
  2. 2.Russian University of Transport (RUT–MIIT)MoscowRussia

Personalised recommendations