Advertisement

Russian Aeronautics

, Volume 61, Issue 2, pp 165–174 | Cite as

Investigation of Buckling Behavior for Thin-Walled Bearing Aircraft Structural Elements with Cutouts by Means of Numerical Simulation

  • V. G. DmitrievEmail author
  • O. V. Egorova
  • S. I. Zhavoronok
  • L. N. Rabinskii
Structural Mechanics and Strength of Flight Vehicles
  • 8 Downloads

Abstract

In this paper, we develop the consistent mathematical models and appropriate lowconsuming numerical methods for investigating the nonlinear strain and buckling behavior of statically loaded thin-walled structures with cutouts. The numerical simulation allowed us to study the effects of the dimensions of rectangular cutouts on the buckling of cylindrical shells loaded by the external pressure.

Keywords

shells with cutouts nonlinear problems finite difference method pseudo-viscosity method iteration process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Filin, A.P., Elementy teorii obolochek (Elements of the Theory of Shells), Leningrad: Stroiizdat, 1987.Google Scholar
  2. 2.
    Grigolyuk, E.I. and Fil’shtinskii, L.A., Perforirovannye plastiny i obolochki (Perforated Plates and Shells), Moscow: Nauka, 1970.zbMATHGoogle Scholar
  3. 3.
    Dmitriev, V.G. and Preobrazhenskii, I.N., Deforming of Flexible Shells with Cutouts, Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela, 1988, no. 1, pp. 177–184.Google Scholar
  4. 4.
    Gavrilenko, G.D., Ustoichivost’ rebristykh tsilindricheskikh obolochek pri neodnorodnom napryazhennodeformirovannom sostoyanii (Stability of Ribbed Cylindrical Shells in the Nonuniform Stress-Strain State), Kiev: Naukova Dumka, 1989.Google Scholar
  5. 5.
    Karmishin, A.V., Lyavkovets, V.A., Myachenkov, V.I., and Frolov, A.N., Statika i dinamika obolochechnykh konstruktsii (Statics and Dynamics of the Shell Structures), Moscow: Mashinostroenie, 1975.Google Scholar
  6. 6.
    Galimov, K.Z., Paimushin, V.N., and Teregulov, I.G., Osnovaniya nelineinoi teorii obolochek (Basics of the Nonlinear Theory of Shells), Kazan: Fen, 1996.Google Scholar
  7. 7.
    Dmitriev, V.G., Variational Difference Schemes in Nonlinear Shell Mechanics, Materialy 4-go mezhdunarodnogo seminara “Tekhnologicheskie problemy prochnosti” (Proc. 4th Int. Seminar “Technological Strength Problems”), Moscow: Izd. MGOU, 1997, pp. 57–67.Google Scholar
  8. 8.
    Samarskii, A.A. Teoriya raznostnykh skhem (The Theory of Difference Schemes), Moscow: Nauka, 1989.Google Scholar
  9. 9.
    Bakhvalov, N.S., Zhidkov, N.P., and Kobel’kov, G.M., Chislennye metody (Numerical methods) Moscow: Laboratoriya Bazovykh Znanii, 2001.zbMATHGoogle Scholar
  10. 10.
    Dmitriev, V.G., Egorova, O.V., and Rabinsky, L.N., Solution of Nonlinear Initial Boundary-Value Problems of the Mechanics of Multiply Connected Composite Material Shells on the Basis of Conservative Difference Schemes, Composites: Mechanics, Computations, Applications, 2015, no. 4, pp. 265–277.Google Scholar
  11. 11.
    Dmitriev, V.G., Biryukov, V.I., Egorova, O.V., Zhavoronok, S.I., and Rabinskii, L.N., Nonlinear Deforming of Laminated Composite Shells of Revolution under Finite Deflections and Normal’s Rotation Angles, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 2, pp. 8–15 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 2, pp. 169–176].Google Scholar
  12. 12.
    Feodos’ev, V.I., On a Method of Solution of the Nonlinear Problems of Stability of Deformable Systems, Prikladnaya Matematika i Mekhanika, 1963, vol. 27, no. 2, pp. 265–274 [J. Appl. Math. Mech. (Engl. Transl.), vol. 27, no. 2, pp. 392–404].MathSciNetzbMATHGoogle Scholar
  13. 13.
    Andreev, L.V., Obodan, N.I., and Lebedev, A.G., Ustoichivost’ obolochek pri neosesimmetrichnoi defomatsii (Stability of Shells in Non-Axisymmetric Strain), Moscow: Nauka, 1988.Google Scholar
  14. 14.
    Thin-Shell Structures: Theory, Experiment and Design, Fung, Y.Ch., Sechler, E.E., (Eds.) Prentice-Hall, Engelwood Cliffs, N.J., 1974.Google Scholar
  15. 15.
    Gorshkov, A.G., Zhavoronok, S.I., Medvedskii, A.L., and Rabinskii, L.N., Plane Problem of Diffraction of an Acoustic Pressure Wave on a Thin Orthotropic Panel Placed in a Rigid Shield. Izv. RAN. Mekhanika Tverdogo Tela, 2004, vol. 39, no. 1, pp. 209–220 [J. RAS. Mechanics of Solids (Engl. Transl.), vol. 39, no. 1, pp. 161–170].Google Scholar
  16. 16.
    Gorshkov, A.G. et al. The Nonstationary Problem of Diffraction of a Cylindrical Acoustic Pressure Wave by a Thin Shell in the Form of an Elliptical Cylinder, Int. J. for Computational Civil and Structural Engineering, 2007, no. 2, pp. 82–93.Google Scholar
  17. 17.
    Zhavoronok, S.I. and Rabinskii, L.N., Axisymmetric Problem of Non-steady Interaction of Acoustic Pressure Waves with Elastic Shell of Revolution, Mekhanika Kompozitsionnykh Materialov i Konstruktsii, 2006, vol. 12, no. 4, pp. 541–554.Google Scholar
  18. 18.
    Egorova, O.V., Zhavoronok, S.I., and Rabinskii, L.N. Interaction of a Shell with a Medium Thickness with an Acoustic Wave, Vestnik MAI, 2010, no. 2, pp. 127–135.Google Scholar
  19. 19.
    Zhavoronok, S.I., Kuprikov, M.Yu., Medvedskii, A.L., and Rabinskii, L.N., Chislenno-analiticheskie methody resheniya zadach difraktsii akusticheskikh voln na absolutno tverdykh telakh i obolochkah (Analytical and Numerical Methods of Solution for Problems of Diffraction of Acoustical Waves on Solids and Shells), Moscow: Fizmatlit, 2010.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. G. Dmitriev
    • 1
    Email author
  • O. V. Egorova
    • 1
  • S. I. Zhavoronok
    • 2
  • L. N. Rabinskii
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Institute of Applied MechanicsRussian Academy of ScienceMoscowRussia

Personalised recommendations