Russian Aeronautics

, Volume 61, Issue 1, pp 37–44 | Cite as

Exploring the Detached-Eddy Simulation for Main Rotor Flows

  • F. Dehaeze
  • G. N. Barakos
  • A. N. KusyumovEmail author
  • S. A. Kusyumov
  • S. A. Mikhailov
Aero- and Gas-Dynamics of Flight Vehicles And Their Engines


This paper applies the Detached-Eddy Simulation (DES) method to resolve a larger part of the flow spectrum around rotor blades in hover and forward flight. A comparison between DES and Unsteady Reynolds–Averaged Navier–Stokes simulation was carried out for the case of a forward flying rotor suggesting that DES has great potential for rotor applications.


main rotor numerical modeling DES model BVI conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilcox, D., Multiscale Model for Turbulent Flows, AIAA Journal, 1988, vol. 26, no. 11, pp. 1311–1320.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Sitaraman, J. and Roget, B., Prediction of Helicopter Maneuver Loads Using a Fluid-Structure Analysis, Journal of Aircraft, 2009, vol. 46, no. 5, pp. 1770–1784.CrossRefGoogle Scholar
  3. 3.
    Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 1994, vol. 32, no. 8, pp. 1598–1605.CrossRefGoogle Scholar
  4. 4.
    Pahlke, K. and van der Wall, B.G., Chimera Simulations of Multibladed Rotors in High-Speed Forward Flight with Weak Fluid-Structure-Coupling, Aerospace Science and Technology, 2005, vol. 9, no. 5, pp. 379–389.CrossRefzbMATHGoogle Scholar
  5. 5.
    Rung T., Lübcke, H., Franke, M., Xue, L., and Thiele, F., Fu, S., Assessment of Explicit Algebraic Stress Models in Transonic Flows, Proc. of the 4th Int. Symposium on Engineering Turbulence Modelling and Measurements, 1999, Corsica, France, pp. 659–668.Google Scholar
  6. 6.
    Dol, H., Kok, J., and Oskam, B., Turbulence Modelling for Leading Edge Vortex Flows, Proc. of the 40th AIAA Aerospace Sciences Meeting and Exhibit, 2002, Reno, Nevada, pp. 659–668, AIAA-2002-0843.Google Scholar
  7. 7.
    Renaud, T., O’Brien, D., Smith, M., and Potsdam, M., Evaluation of Isolated Fuselage and Rotor-Fuselage Interaction Using Computational Fluid Dynamics, Journal of the American Helicopter Society, 2008, vol. 53, no. 1, pp. 3–17.CrossRefGoogle Scholar
  8. 8.
    Dietz, M. and Dieterich, O., Toward Increased Industrial Application of Rotor Aeroelastic CFD, Proc. of the 35th European Rotorcraft Forum, 2009, Hamburg, pp. 860–876, ERF-2009-101185.Google Scholar
  9. 9.
    Borie, S., Mosca, J., Sudre, L., Benoit, C., and Peron, S., Influence of Rotor Wakes on Helicopter Aerodynamic Behaviour, Proc. of the 35th European Rotorcraft Forum, 2009, Hamburg. pp. 648–660, ERF-2009-101205.Google Scholar
  10. 10.
    Potsdam, M., Smith, M., and Renaud, T., Unsteady Computations of Rotor-Fuselage Interaction, Proc. of the 35th European Rotorcraft Forum, 2009, Hamburg, pp. 513–535, ERF-2009-101230.Google Scholar
  11. 11.
    Khier, W., Numerical Simulation of Air Flow Past a Full Helicopter Configuration, Proc. of the 35th European Rotorcraft Forum, 2009, Hamburg, pp. 536–550, ERF-2009-101207.Google Scholar
  12. 12.
    Smith, M.J., Koukol, B.C.G., Quackenbush, T., and Wachspress, D., Reverse-and Cross-Flow Aerodynamics for High-Advance-Ratio Flight, Proc. of the 35th European Rotor craft Forum, 2009, Hamburg, pp. 392–412, ERF-2009-101272. 21 p.Google Scholar
  13. 13.
    Min B.-Y., Sankar, L., Rajmohan, N., and Prasad, J.V.R., Computational Investigation of Gurney Flap Effects on Rotors in Forward Flight, Journal of Aircraft, 2009, vol. 46, no. 6, pp. 1957–1964.CrossRefGoogle Scholar
  14. 14.
    Steijl, R. and Barakos, G., Computational Study of Helicopter Rotor-Fuselage Aerodynamics Interactions, AIAA Journal, 2009, vol. 47, no. 9, pp. 2143–2157.CrossRefGoogle Scholar
  15. 15.
    Barakos, G. and Drikakis, D., Investigation of Nonlinear Eddy-Viscosity Turbulence Models in Shock/Boundary-Layer Interaction, AIAA Journal, 2000, vol. 38, no. 3, pp. 461–469.CrossRefGoogle Scholar
  16. 16.
    Spalart, P.R., Jou, W.H., Strelets, M.Kh., and Almaras, S.R., Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach, Proc. of the 1st AFOSR International Conf. on DNS/LES, 1997, Ruston, LA, pp. 137–147.Google Scholar
  17. 17.
    Ignatkin, Yu.M. and Konstantinov, S.G., Researches of Aerodynamic Characteristics of the Helicopter Main Rotor Using CFD Methods, Trudy MAI, issue 57, 2012, URL:
  18. 18.
    Abalakin I.V, Bahvalov P.A., Bobkov V.G., Kozubskaya T.K., and Anikin V.A. Numerical Simulation of Aerodynamic and Acoustic Characteristics of a Ducted Rotor, Mathematical Models and Computer Simulation, 2016, vol. 8, no. 3, pp. 309–324.CrossRefGoogle Scholar
  19. 19.
    Garipova, L.I., Batrakov, A.S., Kusyumov, A.N., Mikhailov, S.A., and Barakos, G.N., Estimates of Hover Aerodynamics Performance of Rotor Model, Izv.Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 7–13 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 3, pp. 223–231].Google Scholar
  20. 20.
    Kritskii, B.S., Makhnev, M.S., Mirgazov, R.M., Subbotina, P.N., and Trebunskikh, T.V., Aerodynamic Characteristics Calculation on Single Rotor Blade Using FloEFD, ANSYS Fluent and RC-VTOL, Nauchnyi Vestnik MGTU GA, 2016, no. 223, pp. 77–83.Google Scholar
  21. 21.
    Osher, S. and Chakravarthy, S., Upwind Schemes and Boundary Conditions with Applications to Euler Equations in General Geometries, Journal of Computational Physics, 1983, vol. 50, no. 3, pp. 447–481.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Van Albada, G.D., van Leer, B., and Roberts, W.W., Jr., A Comparative Study of Computational Methods in Cosmic Gas Dynamics, Astronomy and Astrophysics, 1982, vol. 108, no. 1, pp. 76–84.zbMATHGoogle Scholar
  23. 23.
    Axelsson, O., Iterative Solution Methods, Cambridge University Press: Cambridge, 1994.CrossRefzbMATHGoogle Scholar
  24. 24.
    Steijl, R., Barakos, G., and Badcock, K., A Framework for CFD Analysis of Helicopter Rotors in Hover and Forward Flight, International Journal for Numerical Methods in Fluids, 2006, vol. 51, no. 8, pp. 819–847.CrossRefzbMATHGoogle Scholar
  25. 25.
    Dehaeze, F., Barakos, G.N., Batrakov, A.S., Kusyumov, A.N., and Mikhailov, S.A., Simulation of Flow Around Aerofoil with DES Model of Turbulence, Trudy MAI, 2012, no. 59, pp. 533–536.Google Scholar
  26. 26.
    Spalart, P.R. and Allmaras, S.R., A One-Equation Turbulence Model for Aerodynamic Flows, La Recherche Aérospatiale, 1994, no. 1, pp. 5–21.Google Scholar
  27. 27.
    Van der Wall, B.G., Burley, C.L., Yu, Yung, Richard, H., Pengel, K., and Beaumier, P., The HART II Test Measurement of Helicopter Rotor Wakes, Aerospace Science and Technology, 2004, vol. 8, no. 4, pp. 273–284.CrossRefGoogle Scholar
  28. 28.
    Lim, J.W. and Strawn, R.C., Computational Modeling of HART II Blade-Vortex Interaction Loading and Wake System, Journal of Aircraft, 2008, vol. 45, no. 3, pp. 923–933.CrossRefGoogle Scholar
  29. 29.
    Van der Wall, B.G., Mode Identification and Data Synthesis of HART II Blade Deflection Data, Braunschweig: German Aerospace Center (DLR), 2007, Tech. Rep. IB-111-2007/28.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • F. Dehaeze
    • 1
  • G. N. Barakos
    • 1
  • A. N. Kusyumov
    • 2
    Email author
  • S. A. Kusyumov
    • 2
  • S. A. Mikhailov
    • 2
  1. 1.University of Glasgow, Glasgow G12 8QQScotlandUnited Kingdom
  2. 2.Tupolev Kazan National Research Technical University, ul. Karla Marksa 10Kazan TatarstanRussia

Personalised recommendations