Russian Aeronautics

, Volume 61, Issue 1, pp 14–22 | Cite as

Aerodynamic Design Method of Integrated Aircraft with Submerged Intake Devices and Power Plant Included into Airframe Carrying System

  • A. V. Kornev
  • V. A. Sereda
  • K. V. MigalinEmail author
Flight Vehicle Design


This paper presents a theoretically and practically grounded architecture of design methods combination. A possibility and completeness of developing integral design solutions and intensifying the design process are provided by redistribution of emphases of numerical and natural experiments.


method aerodynamic design aircraft integrated embodiment submerged air intake propulsion system numerical experiment natural experiment wind tunnel model identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gaifutdinov, R.A., Maximization of the Lift Coefficient of Airfoils Equipped with Active Flow Control Devices, Izv. Vuz. Av. Tekhnika, 2009, vol. 52, no. 3, pp. 28–32 [Russian Aeronautics (Engl. Transl.), vol. 52, no. 3, pp. 302–309].Google Scholar
  2. 2.
    Ambrozhevich, A.V. and Boichuk, I.P., Generalized Aerogasdynamic Trajectory Models of Unmanned Aerial Vehicles, Aerogidrodinamika i aeroakustika: problemy i perspektivy (Aerohydrodynamics and Aeroacoustics: Problems and Perspectives), Kharkiv: KhAI, 2009, no. 3, pp. 11–18.Google Scholar
  3. 3.
    Ambrozhevich, M.V., Kornev, A.V., Sereda V.A., A Low Resource Submodel of Turbojet Engine, Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya, 2016, no. 1 (128), pp. 44–52.Google Scholar
  4. 4.
    Jirásek, A., Example of Integrated Computational Fluid Dynamics and Experimental Studies: Design of Flow Control in the FOI-EIC-01 Inlet, Proc. of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2009, vol. 223, no. 4, pp. 369–377.CrossRefGoogle Scholar
  5. 5.
    Davis, M.W., Hale, A.A., Klepper, J., Dubreus, T., and Cousins, W.T., Demonstration of an Integrated Test and Evaluation (IT&E) Process for Airframe-Propulsion Systems as Applied to a Current Weapon System Program, Proc. of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 2010, AIAA 2010–1039.Google Scholar
  6. 6.
    Rademakers, R., Bindl, S., Brehm, S., Muth, B., and Niehuis, R., Investigation of Flow Distortion in an Integrated Inlet of a Jet Engine, DLRK2013-301349, Proc. of the German Aerospace Congress, Stuttgart, Germany, 2013.Google Scholar
  7. 7.
    Druzhinin, E.D., Chmovzh, V.V., and Kornev, A.V., Application of Aerodynamic Design Methods While Life Cycle Implementation for Advanced Aeronotical Engineering Development, Sistemi ozbroennya i viys'kova tekhnika, 2011, vol. 28, no. 4, pp. 48–57.Google Scholar
  8. 8.
    Eger, S.M., Liseitsev, N.K., and Samoilovich, O.S., Osnovy avtomatizirovannogo proektirovaniya samoletov (Fundamentals of Computer-Aided Aircraft Design), Moscow: Mashinostroenie, 1986.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Zhukovskii National Aerospace University “Kharkiv Aviation Institute”KharkivUkraine
  2. 2.OOO HPF RotorStavropol’skii raionRussia

Personalised recommendations