Russian Aeronautics

, Volume 61, Issue 1, pp 1–7 | Cite as

Optical Design for a Cubesat: Unobscured Telescope, Using Freeform Mirrors and a Curved Detector

  • E. R. Muslimov
  • E. Hugot
  • M. Ferrari
  • T. Behaghel
  • N. K. PavlychevaEmail author
Aircraft Equipment


The possibility of constructing an optical scheme of a telescope for a small satellite based on mirrors with freeform surfaces and a curved photodetector is considered. It is shown that the use of a new element base allows the effective area of the main mirror to be maximized and the field of view up to 9.4 times to be increased in comparison with the classical scheme of the Ritchey–Chretien scheme in ensuring the high image quality.


small satellites ground observations telescope freeform mirrors curved detector 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glushchenkov, V.A. and Yusupov, R.Yu., Controlled Separation of Nanosatellites by Means of the Pulsed Magnetic Field, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 1, pp. 3–9 [Russian Aeronautics (Engl.Transl.), vol. 60, no. 1, pp. 1–8].Google Scholar
  2. 2.
    Alifanov, O.M., Egorov, Yu.G., Kul’kov, V.M., Terent’ev, V.V., and Firsyuk, S.O., An Approach to Forming the Design Performance of the Attitude Control System for Small Spacecraft, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 15–20 [Russian Aeronautics (Engl.Transl.), vol. 58, no. 4, pp. 376–382].Google Scholar
  3. 3.
    Poghosyan, A. and Golkar, A., Cubesat Evolution: Analyzing CubeSat Capabilities for Conducting Science Missions, Progress in Aerospace Sciences, 2017, no. 88, pp. 59–83.CrossRefGoogle Scholar
  4. 4.
    Bouwmeester, J. and Guo, J., Survey of Worldwide Pico-and Nanosatellite Missions, Distributions and Subsystem Technology, Acta Astronautica, 2010, vol. 67, nos. 7–8, pp. 854–862.CrossRefGoogle Scholar
  5. 5.
    Andersen, G., Asmolov, O., Dearborn, M.E., and McHarg, M.G., FalconSAT-7: A Membrane Photon Sieve CubeSat Solar Telescope, Proc. SPIE, 2012, vol. 8442, pp. 84421C–1–8.CrossRefGoogle Scholar
  6. 6.
    Schwartz, N., Pearson, D., Todd, S., Vick, A., Lunney, D., and MacLeod, D., A Segmented Deployable Primary Mirror for Earth Observation from a CubeSat Platform, Proc. 30th Annual AAIA/USU Conference on Small Satellites, 2016, SSC16-WK-3.Google Scholar
  7. 7.
    Jin, H., Lim, J., Kim, Y., and Kim, S., Optical Design of a Reflecting Telescope for CubeSat, Journal of the Optical Society of Korea, 2013, vol. 17, pp. 533–537.CrossRefGoogle Scholar
  8. 8.
    Chen, C.-W. and Chen, C.-R., Optical Design and Tolerance Analysis of a Reflecting Telescope for CubeSat, Proc. SPIE, 2015, vol. 9602, pp. 96020P–1–9.CrossRefGoogle Scholar
  9. 9.
    Ye, J., Gao, Z., Wang, S., Cheng, J., Wang, W., and Sun, W., Comparative Assessment of Orthogonal Polynomials for Wavefront Reconstruction over the Square Aperture, Journal of the Optical Society of America A, 2014, vol. 31, no. 10, pp. 2304–2311.CrossRefGoogle Scholar
  10. 10.
    Muslimov, E.R., Hugot, E., Jahn, W., Vives, S., Ferrari, M., Chambion, B., Henry, D., and Gaschet, C., Combining Freeform Optics and Curved Detectors for Wide Field Imaging: A Polynomial Approach over Squared Aperture, Optics Express, 2017, vol. 25, no. 13, pp. 14598–14610.CrossRefGoogle Scholar
  11. 11.
    Agócs, T., Navarro, R., Venema, L., and Kroes, G., Optimizing an Active Extreme Asphere Based Optical System, Proc. SPIE, 2012, vol. 8550, pp. 85501G–1–13.CrossRefGoogle Scholar
  12. 12.
    Kim, S., Chang, S., Pak, K., Lee, K.J., Jeong, B., Kim, G.H., Kim, G.H., Shin, S.K., and Yoo, S.M., Fabrication of Electroless Nickel Plated Aluminum Freeform Mirror for an Infrared Off-Axis Telescope, Applied Optics, 2015, vol. 54, no. 34, pp. 10137–10144.CrossRefGoogle Scholar
  13. 13.
    Wolfs, F., Fess, E., DeFisher, S., Torres, J., and Ross, J., Freeform Grinding and Polishing with ProSurf, Proc. SPIE, 2015, vol. 9633, pp. 96331G–1–11.Google Scholar
  14. 14.
    Ferrari, M., Development of a Variable Curvature Mirror for the Delay Lines of the VLT Interferometer, Astron. Astrophys. Suppl. Ser., 1998, vol. 128, pp. 221–227.CrossRefGoogle Scholar
  15. 15.
    Chambion, B., Nikitushkina, L.I., Gaeremynck, Y., Jahn, W., Hugot, E., Moulin, G., Getin, S., Vandeneynde, A., and Henry, D., Tunable Curvature of Large Visible CMOS Image Sensors: Towards New Optical Functions and System Miniaturization, Proc. of the IEEE 66th Electronic Components and Technology Conference, Las Vegas, 2016, pp. 178–187.Google Scholar
  16. 16.
    Laslandes, M., Hugot, E., Ferrari, M., Hourtoule, C., Singer, C., Devilliers, C., Lopez, C., and Chazallet, F., Mirror Actively Deformed and Regulated for Applications in Space: Design and Performance, Optical Engineering, 2013, vol. 52, no. 9, pp. 091803–1–12.CrossRefGoogle Scholar
  17. 17.
    Gaschet, Ch., Chambion, B., Gétin, S., Moulin, G., Vandeneynde, A., Caplet, S., Henry, D., Hugot, E., Jahn, W., Behaghel, T., Lombardo, S., Roulet, M., Muslimov, E.R., and Ferrari, M., Curved Sensors for Compact High-Resolution Wide Field Designs, Proc. SPIE, 2017, vol. 10376, pp. 1037603–1–11.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. R. Muslimov
    • 1
    • 2
  • E. Hugot
    • 1
  • M. Ferrari
    • 1
  • T. Behaghel
    • 1
  • N. K. Pavlycheva
    • 2
    Email author
  1. 1.Aix Marseille Université, CNRS, LAMLaboratoire d’Astrophysique de MarseilleMarseilleFrance
  2. 2.Tupolev Kazan National Research Technical UniversityKazan TatarstanRussia

Personalised recommendations