Advertisement

Russian Engineering Research

, Volume 39, Issue 11, pp 944–950 | Cite as

Analysis of Patents for Airplane Power Units

  • Yu. N. ShalimovEmail author
  • V. I. Korol’kov
  • A. P. Budnik
  • A. L. Gusev
  • A. V. Russu
Article

Abstract

Patents for aircraft power units are analyzed. Priorities in their development are the use of hydrogen fuel and the improvement of slip bearings.

Keywords:

patent analysis airplanes power units hydrogen fuel slip bearings 

Notes

FUNDING

Financial support was provided by the Russian Ministry of Education and Science for the development of wear-resistant slip-bearing coatings with superlow frictional coefficients on the basis of Ni–B alloy (project 9.11295.2018/10.11).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    Koen, F., A complexity approach to innovation networks. The case of the aircraft industry (1909–1997), Res. Policy, 2000, vol. 29, no. 2, pp. 257–272. https:// EconPapers.repec.org/RePEc:eee:respol:v:29:y:2000: i:2:p:257-272.CrossRefGoogle Scholar
  2. 2.
    Kharuk, A.I., VVS XXI veka (Air Forces in 21st Century), Moscow: Eksmo, 2013.Google Scholar
  3. 3.
    National Academies of Sciences, Engineering, and Medicine, Aeronautics 2050: Proceedings of a Workshop-in Brief, Washington, DC: National Academies Press, 2018.  https://doi.org/10.17226/25005
  4. 4.
    Baranov, N.N., Netraditsionnye istochniki i metody preobrazovaniya energii: Uchenoe posobie dlya vuzov (Nontraditional Sources and Methods of Energy Transformation: Manual), Moscow: Mosk. Energ. Inst., 2012.Google Scholar
  5. 5.
    Zanetti, A., Sabatini, R., and Gardi, A., Introducing green life cycle management in the civil aviation industry: the state-of-the-art and the future, Int. J. Sustainable Aviat., 2016, vol. 2, no. 4, pp. 348–380.  https://doi.org/10.1504/IJSA.2016.082201 CrossRefGoogle Scholar
  6. 6.
    Lee, J. and Mo, J., Analysis of technological innovation and environmental performance Improvement in aviation sector, Int. J. Environ. Res. Public Health, 2011, vol. 8, pp. 3777–3795.CrossRefGoogle Scholar
  7. 7.
    Niosi, J. and Zhegu, M., Innovation system lifecycle in the aircraft sector, 2008. https://www.researchgate.net/publication/228943588.Google Scholar
  8. 8.
    Szabo, S., Koblen, I., and Vajdova, I., Aviation technology life cycle stages, eXclusive e-JOURNAL, 2015, no. 3, pp. 1–8.Google Scholar
  9. 9.
    Karpunin, M.G., Lyubinetskii, Ya.G., and Maidanchik, B.I., Zhiznennyi tsikl i effektivnost’ mashin (Service Life and Efficiency of Machines), Moscow: Mashinostroenie, 1989.Google Scholar
  10. 10.
    http://www.lens.org; http://www.depatisnet.org.Google Scholar
  11. 11.
    Aviatsiya: Entsiklopediya (Aviation: Encyclopedia), Svishchev, G.P., Ed., Moscow: Bol’shaya Rossiiskaya Entsiklopediya, 1994.Google Scholar
  12. 12.
    Shalimov, Yu.N., Zvyagintseva, A.V., Pomiguev, A.V., and Russu, A.V., Electrochemical technologies for the implementation of safe hydrogen storage systems, Vestn. Voronezh. Gos. Tekh. Univ., 2018, vol. 14, no. 3, pp. 163–170.Google Scholar
  13. 13.
    Postnikov, V.S., Vnutrennee trenie v metallakh (Internal Friction in Metals), Moscow: Metallurgiya, 1974, 2nd ed.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • Yu. N. Shalimov
    • 1
    Email author
  • V. I. Korol’kov
    • 1
  • A. P. Budnik
    • 1
  • A. L. Gusev
    • 1
  • A. V. Russu
    • 1
  1. 1.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations