Russian Engineering Research

, Volume 39, Issue 8, pp 672–679 | Cite as

Additive Technology in Restoring the Worn Spherical Surface of Crusher Cones

  • E. F. RomanenkoEmail author
  • V. V. Gorozhankin
  • V. M. Shestakova
  • M. S. Terekhin
  • D. N. Romanenko
  • R. R. Dema

Abstract—Restoration of the spherical surface of a steel 35L cone housing by mechanized surfacing in protective gas is proposed. The method employed does not involve heating of the part before or in the course of surfacing. The coating produced has the required thickness and chemical composition, with specified structure. The coating is strongly bound to the restored surface and is free of pores and cracks.


surface restoration spherical surface crusher cones mechanized surfacing microstructure wear resistance 



The work was supported by the Russian Ministry of Education and Science, project no. 11.2054.2017/4.6.


  1. 1.
    Koloskov, M.M., Dolbenko, V.T., Kashirskii, Yu.V., et al., Marochnik stalei i splavov (Grade Guide of Steels and Alloys), Zubchenko, A.S., Ed., Moscow: Mashinostroenie, 2001.Google Scholar
  2. 2.
    Bolkhovitinov, N.F. and Bolkhovitinov, B.N., Atlas makro- i mikrostruktur metallov i splavov (Atlas of Macro- and Microstructures of Metals and Alloys), Moscow: Mashgiz, 1959.Google Scholar
  3. 3.
    Dumov, S.I., Tekhnologiya elektricheskoi svarki plavleniem (Technology of Electrical Welding by Smelting), Moscow: Mashinostroenie, 1987.Google Scholar
  4. 4.
    Kablov, E.N., Evgenov, A.G., Ospennikova, O.G., et al., Metal powder compositions of heat resistant alloy EP648 produced at the All-Russian Research Institute of Aviation Materials used in selected laser sintering, laser gas-powder surfacing, and highly precise casting of polymers filled by metal powders, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2016, no. 9 (678), pp. 62–80.Google Scholar
  5. 5.
    Kablov, E.N., Evgenov, A.G., Ryl’nikov, V.S., and Afanas’ev-Khodykin, A.N., Fine solder powders for diffusion vacuum soldering obtained by melt atomization, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2011, no. 2, pp. 79–87.Google Scholar
  6. 6.
    Kolobov, Yu.R., Kablov, E.N., Kozlov, E.V., et al., Struktura i svoistva intermetallidnykh materialov s nanofaznym uprochneniem (The Structure and Properties of Intermetallide Materials with Nanophase Hardening), Kablov, E.N. and Kolobov, Yu.R., Eds., Moscow: Mosk. Inst. Stali Splavov, 2008.Google Scholar
  7. 7.
    Alymov, M.I., Consolidated powder nanomaterials: a review, Aviats. Mater. Tekhnol., 2014, suppl. 4, pp. 34–39.
  8. 8.
    Rodionov, A.I., Efimochkin, I.Yu., Buyakina, A.A., and Letnikov, M.N., Spheroidization of metallic powders: a review, Aviats. Mater. Tekhnol., 2016, suppl. 1, pp. 60–64.
  9. 9.
    Aleksenko, V.Yu., Ryabov, M.M., Korolev, A.V., and Boikov, A.M., Binders for powder casting under pressure: a review, Aviats. Mater. Tekhnol., 2015, no. 3, pp. 44–50.
  10. 10.
    Kraev, I.D., Govorov, V.A., Popkov, O.V., et al., Production of fine dispersed powders of NiFe204 by high-energy grinding in a closed-loop bead mill, Aviats. Mater. Tekhnol., 2017, no. 2, pp. 24–30.
  11. 11.
    Panteleenko, F.N., Lyalyakin, V.P., Ivanov, V.P., and Konstantinov, V.M., Vosstanovlenie detalei mashin (Reparation of Machine Parts), Moscow: Mashinostroenie, 2003.Google Scholar
  12. 12.
    Spravochnik svarshchika (Welder’s Handbook), Stepanov, V.V., Ed., Moscow: Mashinostroenie, 1975.Google Scholar
  13. 13.
    Horn, V., Schweißtechnischer Gefügeatlas, Berlin: Verlag Technik, 1974.Google Scholar
  14. 14.
    Habraken, L. and De Brouwer, J.L., De Ferri Metallographia: Metallographic Atlas of Iron, Steels and Cast Irons, Vol. 1: Fundamentals of Metallography, Brussels: Presses Acad. Eur., 1966.Google Scholar
  15. 15.
    Schrader, A. and Rose, A., De Ferri Metallographia: Metallographic Atlas of Iron, Steels and Cast Irons, Vol. 2: Structure of Steels, Düsseldorf: Stahleisen Verlag, 1966.Google Scholar
  16. 16.
    Gadalov, V.N., Kolmykov, D.V., Korenevskii, N.A., et al., Low-temperature nitrocementation to improve the life of resurfaced tractor crankshafts, Russ. Eng. Res., 2010, vol. 30, no. 11, pp. 1090–1091.CrossRefGoogle Scholar
  17. 17.
    Grigoriev, S.B., Efimenko, L.A., Salnikov, V.G., and Gadalov, V.N., Evaluation of hard—facing and process of its application on drill pipe tool joints, Chem. Petrol. Eng., 2013, vol. 48, no. 9, 10, pp. 642–645.Google Scholar
  18. 18.
    Romanenko, D.N., Artemenko, Yu.A., Emelyushin, A.N., et al., Physical modeling of the mechanism of modification with wear-resistant surfacing, Chem. Petrol. Eng., 2017, vol. 52, no. 11, pp. 769–773.CrossRefGoogle Scholar
  19. 19.
    Nefed’ev, S.P., Dema, R.R., Kharchenko, M.V., et al., Experience in restoring hydraulic cylinder rods by plasma powder surfacing, Chem. Petrol. Eng., 2017, vol. 52, no. 11, pp. 785–789.CrossRefGoogle Scholar
  20. 20.
    Lavrentev, A.Y., Dozhdelev, A.M., and Filonovich, A.V., Research of structural phase transformations in the fusion area of bimetallic punching tools, J. Chem. Technol. Metall., 2017, vol. 52, no. 4, pp. 707–710.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • E. F. Romanenko
    • 1
    Email author
  • V. V. Gorozhankin
    • 1
  • V. M. Shestakova
    • 1
  • M. S. Terekhin
    • 2
  • D. N. Romanenko
    • 3
  • R. R. Dema
    • 4
  1. 1.Moscow Institute of Steel and AlloysMoscowRussia
  2. 2.PAO Mikhailovskii GOKZheleznogorskRussia
  3. 3.All-Russian Scientific Research Institute of Aviation MaterialsMoscowRussia
  4. 4.Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia

Personalised recommendations