Advertisement

Russian Engineering Research

, Volume 39, Issue 5, pp 423–430 | Cite as

Evolution of the Dynamic Cutting System with Irreversible Energy Transformation in the Machining Zone

  • V. L. ZakovorotnyEmail author
  • V. E. GvindjiliyaEmail author
Article

Abstract

The evolution of the dynamic cutting system is simulated with different trajectories of the power of irreversible transformations in performing work. The evolutionary changes associated with change in tool wear and in surface precision and quality depend on the dynamic properties, on the subsystems that interact through cutting, and also on the initial dynamic relationship formed by the process.

Keywords:

dynamic cutting system evolution attractive sets deformational displacements bifurcations Volterra equation 

Notes

FUNDING

The work was supported by the Russian Foundation for Basic Research, project no. 19-08-00022A.

REFERENCES

  1. 1.
    Dal’skii, A.M. and Suslov, A.G., Nauchnye osnovy tekhnologii mashinostroeniya (Scientific Principles of Machine Engineering Technology), Moscow: Mashinostroenie, 2002.Google Scholar
  2. 2.
    Pronikov, A.S., Nadezhnost’ mahsin (Reliability of Machines), Moscow: Mashinostroenie, 1978.Google Scholar
  3. 3.
    Pronikov, A.S., Programmnyi metod ispytanii metallorezhushchikh stankov (Software for Testing of Metal-Cutting Machines), Moscow: Mashinostroenie, 1985.Google Scholar
  4. 4.
    Zakovorotnyi, V.L. and Gvindzhiliya, V.E., Influence of kinematic perturbations along longitudinal feed on the trajectory of the shaping motions, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Tekh. Nauki, 2016, no. 4 (192), pp. 67–76.Google Scholar
  5. 5.
    Zakovorotnyi, V.L. and Gvindzhiliya, V.E., Influence of the motion error of the lathe turning elements on the trajectory of the shaping motions, Vestn. Donsk. Gos. Tekh. Univ., 2017, vol. 17, no. 1 (88), pp. 35–46.Google Scholar
  6. 6.
    Zakovorotny, V.L. and Gvindzhiliya, V.E., Dynamic influence of spindle wobble in a lathe on the workpiece geometry, Russ. Eng. Res., 2018, vol. 38, no. 9, pp. 723–725.CrossRefGoogle Scholar
  7. 7.
    Zakovorotny, V.L. and Gvindzhiliya, V.E., Influence of spindle wobble in a lathe on the tool’s deformational-displacement trajectory, Russ. Eng. Res., 2018, vol. 38, no. 8, pp. 623–631.CrossRefGoogle Scholar
  8. 8.
    Zakovorotnyi, V.L. and Gvindzhiliya, V.E., Bifurcations of attracting sets of deformation shifts of the cutting tool depending on the beats of the spindle group, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2017, vol. 25, no. 6, pp. 40–52.Google Scholar
  9. 9.
    Kozochkin, M.P. and Allenov, D.G., The effect of wear of the cutting edge of the tool on the deformation of the surface of the part, Vestn. Mos. Gos. Tekhnol. Univ., Stankin, 2015, no. 4 (35), pp. 22–29.Google Scholar
  10. 10.
    Loladze, T.N., Prochnost’ i iznosostoikost’ rezhushchego insturmenta (Durability and Wear-Resistance of Cutting Tool), Moscow: Mashinostroenie, 1982.Google Scholar
  11. 11.
    Makarov, A.D., Optimizatsiya protsessov rezaniya (Optimization of Cutting Processes), Moscow: Mashinostroenie, 1976.Google Scholar
  12. 12.
    Postnov, V.V. and Shafikov, A.A., Development of the model of cutting tool wear for process control, Vestn. Ufimsk. Gos. Aviats. Tekh. Univ., 2014, vol. 11, no. 2 (29), pp. 139–146.Google Scholar
  13. 13.
    Zakovorotny, V.L. and Lukyanov, A.D., The problems of control of the evolution of the dynamic system interacting with the medium, Int. J. Mech. Eng. Autom., 2014, vol. 1, no. 5, pp. 271–285.Google Scholar
  14. 14.
    Zakovorotnyi, V.L., Modeling of evolutionary transformations in machining on metal-cutting machines using integral operators, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, 2004, no. 5, pp. 26–40.Google Scholar
  15. 15.
    Zakovorotnyi, V.L., Flek, M.B., Luk’yanov, A.D., and Voloshin, D.A., Modeling of the tool wear using integrated operators, Stanki Instrum., 2004, no. 3, pp. 9–14.Google Scholar
  16. 16.
    Zakovorotnyi, V.L. and Bordachev, E.V., Information support of the dynamic diagnostic system of wear of the cutting tool by the example of turning, Probl. Mashinostr. Nadezhnosti Mash., 1995, no. 3, pp. 95–103.Google Scholar
  17. 17.
    Kudinov, V.A., Dinamika stankov (Dynamics of Machines), Moscow: Mashinostroenie, 1967.Google Scholar
  18. 18.
    El’yasberg, M.E., Avtokolebaniya metallorezhushchikh stankov: teoriya i praktika (Auto-Oscillations of Metal-Cutting Machines: Theory and Practice), St. Petersburg: Osoboe Konstr. Byuro Stankostr., 1993.Google Scholar
  19. 19.
    Veits, V.L. and Vasil’kov, D.V., Dynamics, modeling, and quality maintenance at the machine treatment of low-rigidity billets, Stanki Instrum., 1999, no. 6, pp. 9–13.Google Scholar
  20. 20.
    Foretskii, Yu.I., The theory of nonlinear oscillations and machine dynamics, Vestn. Nizhegorodsk. Univ. im. N.I. Lobachevskogo, Ser.: Math. Model. Optim. Upr., 2001, no. 2, pp. 69–88.Google Scholar
  21. 21.
    Voronov, S.A., Nepochatov, A.V., and Kiselev, I.A., Assessment criteria of stability of milling of non-rigid parts, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2011, no. 1, pp. 50–62.Google Scholar
  22. 22.
    Zakovorotny, V.L., Gubanova, A.A., and Lukyanov, A.D., Stability of shaping trajectories in milling: synergetic concepts, Russ. Eng. Res., 2016, vol. 36, no. 11, pp. 956–964.CrossRefGoogle Scholar
  23. 23.
    Vasin, S.A. and Vasin, L.A., The nature of the occurrence and development of auto-oscillations during turning: synergistic approach, Naukoemkie Tekhnol. Mashinostr., 2012, no. 1, pp. 11-16.Google Scholar
  24. 24.
    Borodkin, N.N., Vasin, S.A., and Vasin, L.A., Prevention of auto-oscillations during turning by cutters with structured holders, Izv. Tul’sk. Gos. Univ., Tekh. Nauki, 2014, no. 11 (1), pp. 234-243.Google Scholar
  25. 25.
    Voronov, S.A. and Kiselev, I.A., Nonlinear dynamic problems for cutting processes, Mashinostr., Inzh. Obraz., 2017, no. 2 (51), pp. 9–23.Google Scholar
  26. 26.
    Gouskov, A.M., Voronov, S.A., Paris, H., and Batzer, S.A., Nonlinear dynamics of a machining system with two interdependent delays, Commun. Nonlinear Sci. Numer. Simul., 2002, vol. 7, pp. 207–221.CrossRefzbMATHGoogle Scholar
  27. 27.
    Kao, Y.-C., Nguyen, N.-T., Chen, M.-S., and Su, S.T., A prediction method of cutting force coefficients with helix angle of flat-end cutter and its application in a virtual three-axis milling simulation system, Int. J. Adv. Manuf. Technol., 2015, vol. 1, nos. 9–12, pp. 1793–1809.CrossRefGoogle Scholar
  28. 28.
    Warminski, J., Litak, G., Cartmell, M.P., et al., Approximate analytical solutions for primary chatter in the non-linear metal cutting model, J. Sound Vib., 2003, vol. 259, no. 4, pp. 917–933.CrossRefGoogle Scholar
  29. 29.
    Stepan, G., Delay-differential equation models for machine tool chatter, in Nonlinear Dynamics of Material Processing and Manufacturing, Moon, F.C., Ed., New York: Wiley, 1998, pp. 165–192.Google Scholar
  30. 30.
    Stepan, G., Insperge, T., and Szalai, R., Delay-parametric excitation, and the nonlinear dynamics of cutting processes, Int. J. Bifurcation Chaos Appl. Sci. Eng., 2005, vol. 15, no. 9, pp. 2783–2798.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zakovorotny, V.L., Lukyanov, A.D., Gubanova, A.A., and Khristoforova, V.V., Bifurcation of stationary manifolds formed in the neighborhood of the equilibrium in a dynamic system of cutting, J. Sound Vib., 2016, vol. 368, pp. 174–190.CrossRefGoogle Scholar
  32. 32.
    Zakovorotny, V.L., Gubanova, A.A., and Lukyanov, A.D., Attractive manifolds in end milling, Russ. Eng. Res., 2016, vol. 36, no. 2, pp. 158–163.CrossRefGoogle Scholar
  33. 33.
    Zakovorotnyi, V.L., Fam, D.T., and Bykador, V.S., Self-organization and bifurcation of dynamic system for metal cutting, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2014, vol. 22, no. 3, pp. 26–39.Google Scholar
  34. 34.
    Zakovorotnyi, V.L., Fam, D.T., and Bykador, V.S., Influence of flexural deformations of tool on self-organization and bifurcation of dynamic system of metal cutting, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 2014, vol. 22, no. 3, pp. 40–52.Google Scholar
  35. 35.
    Zakovorotnyi, V.L. and Fam, T.Kh., Parametric self-excitation of dynamics system of cutting, Vestn. Donsk. Gos. Tekh. Univ., 2013, nos. 5–6, pp. 97–103.Google Scholar
  36. 36.
    Haken, H., Erfolgsgeheimnisse der Natur. Synergetik: Die Lehre vom Zusammenwirken, Stuttgart: Deutsche Verlags-Anstalt, 1981.Google Scholar
  37. 37.
    Prigogine, I., From Being to Becoming: Time and Complexity in the Physical Sciences, San Francisco: W.H. Freeman, 1980.Google Scholar
  38. 38.
    Prigogine, I. and Stengers, I., Order Out of Chaos: Man’s New Dialogue with Nature, New York: Bantam Books, 1984.Google Scholar
  39. 39.
    Zakovorotnyi, V.L., Fam, D.T., Nguen, S.T., and Ryzhkin, M.N., Modeling of the dynamic relation during turning in the problems of the dynamics of the cutting process: speed relationship, Vestn. Donsk. Gos. Tekh. Univ., 2011, vol. 11, no. 2 (53), pp. 137–146.Google Scholar
  40. 40.
    Zakovorotnyi, V.L., Fam, D.T., Nguen, S.T., and Ryzhkin, M.N., Modeling of the dynamic relation during turning in the problems of the dynamics of the cutting process: positional relationship, Vestn. Donsk. Gos. Tekh. Univ., 2011, vol. 11, no. 3 (54), pp. 301–311.Google Scholar
  41. 41.
    Myshkis, A.D., Matematika dlya vtuzov. Spetsial’nye kursy (Mathematics of Higher Education Engineering Institutions. Special Courses), Moscow: Nauka, 1971, pp. 443–454.Google Scholar
  42. 42.
    Khusu, A.P., Vitenberg, Yu.R., and Pal’mov, V.A., Sherokhovatost’ poverkhnostei. Teoretiko-veroyatnostnyi podkhod (Roughness of Surfaces: Theoretical and Probabilistic Approach), Moscow: Nauka, 1975.Google Scholar
  43. 43.
    Zakovorotnyi, V.L., Flek, M.B., and Fam, D.T., Synergetic principles in control systems for manufacturing of precision parts with complex geometric shapes, Vestn. Donsk. Gos. Tekh. Univ., 2011, vol. 11, no. 10 (61), pp. 1785–1797.Google Scholar
  44. 44.
    Zakovorotnyi, V.L., Lapshin, V.P., and Turkin, I.A., Drilling control of deep holes by spiral drills using a synergistic approach, Izv. Vyssh. Uchebn. Zaved., Sev.‑Kavk. Reg., Tekh. Nauki, 2014, no. 3 (178), pp. 33–41.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Don State Technical UniversityRostov-on-DonRussia

Personalised recommendations