Advertisement

Russian Engineering Research

, Volume 39, Issue 5, pp 357–361 | Cite as

Control of Hybrid Power Unit with a Mechanical Transmission in High-Speed Caterpillar Vehicles

  • S. V. KondakovEmail author
  • N. A. Vechtein
  • N. V. Dubrovskii
Article
  • 5 Downloads

Abstract

The properties of a hybrid power unit in which a mechanical transmission rigidly connects the internal combustion engine to the driving wheels are considered. In this transmission, the torque created by the parallel electric field is summed with the torque generated by the engine in the event of overloading. The control algorithms developed for the electric power prevent its opposition to the mechanical power under any circumstances.

Keywords:

hybrid power unit relay controller starter–generator torque conversion factor automatic systems overloading internal combustion engine control algorithm 

Notes

REFERENCES

  1. 1.
    10 million: hybrids from Toyota’s company are breaking popularity records, Toyota, 2017. https://www.toyota.ru/news_and_events/2017/10-millions.json.Google Scholar
  2. 2.
    Noben, P.F.M., A Comparison Study between Power-Split CVTs and a Push-Belt CVT, Eindhoven, 2007.Google Scholar
  3. 3.
    Hofman, T. and Purnot, T., A comparative study and analysis of an optimized control strategy for the Toyota hybrid system, World Electr. Veh. J., 2009, vol. 3, no. 3, pp. 563–571.CrossRefGoogle Scholar
  4. 4.
    Tjärnbergs, J., Development of control strategies and transmission model for attribute simulations of a diesel HEV with split-power CVT, MSc Thesis, Luleå: Luleå Univ. Technol., 2004.Google Scholar
  5. 5.
    Dalsjø, P., Hybrid Electric Propulsion for Military Vehicles: Overview and Status of the Technology, Kjeller: Norw. Def. Res. Establ., 2008.Google Scholar
  6. 6.
    Gomberg, B.N., Kondakov, S.V., Nosenko, L.S., and Pavlovskaya, O.O., Modeling of the movement of a high-speed tracked vehicle with an electric transmission, Vestn. Yuzh.-Ural. Gos. Univ., Ser. Energ., 2012, vol. 18, no. 37 (296), pp. 73–81.Google Scholar
  7. 7.
    Kondakov, S.V., Povyshenie podvizhnosti bystrokhodnoi gussnichnoi mashiny putem avtomatizatsii sistemy upravleniya krivolineinym dvizheniem (Improving the Mobility of a High-Speed Tracked Vehicle by Automated Control of Curvilinear Motion), Chelyabinsk: Yuzh.-Ural. Gos. Univ., 2009.Google Scholar
  8. 8.
    Kondakov, S.V. and Pavlovskaya, O.O., Avtomatizirovannoe upravlenie dvizheniem bystrokhodnoi gusenichnoi mashiny: Monografiya (Automated Motion Control of the High-Speed Track-Laying Machine: Monograph), Saarbrucken: LAP Lambert Academic, 2013.Google Scholar
  9. 9.
    Kondakov, S.V. and Pavlovskaya, O.O., Intelligent continuously variable transmission is a control unit of fuel consumption by combustion engine and torsion moment of the driving wheel, Vestn. Mashinostr., 2013, no. 7, pp. 3–11.Google Scholar
  10. 10.
    Ovchinnikov, I.E., Ventil’nye elektricheskie dvigateli i privody na ikh osnove: Kurs lektsii (Converter-Fed Electric Engines and Drives: A Course of Lectures), St. Petersburg: Korona-Vek, 2006.Google Scholar
  11. 11.
    Zakladnoi, A.N. and Zakladnoi, O.A., Elektroeffektivnyi elektroprivod s ventil’nymi dvigatelyami (Energy Efficient Electric Drives with Converter-Fed Electric Motors), Kiev: Libra, 2012.Google Scholar
  12. 12.
    Gandzha, S.A., Converter-fed electric machines with an axial magnetic flux: analysis, synthesis, production, Doctoral (Eng.) Dissertation, Chelyabinsk: Southern Ural State Univ., 2012.Google Scholar
  13. 13.
    Voronin, S.G., Sogrin, A.I., Shvalev, E.S., and Kislitsin, V.I., Generator in hybrid bulldozer power system, Trakt. Sel’khozmash., 2012, no. 2, pp. 8–11.Google Scholar
  14. 14.
    Kondakov, S.V. and Pavlovskaya, O.O., The acceleration of energy-efficient high-speed tracked vehicles with intelligent electric transmission, Vestn. Mashinostr., 2016, no. 12, pp. 3–8.Google Scholar
  15. 15.
    Kondakov, S.V., Pavlovskaya, O.O., and Goryaev, N.K., Turn behavior of energy-efficient high-speed tracked vehicles with a smart electrical transmission, Russ. Eng. Res., 2015, vol. 35, no. 2, pp. 97–101.CrossRefGoogle Scholar
  16. 16.
    Kondakov, S.V., Kharlapanov, D.V., and Vansovich, E.I., Models of the turn resistance for high-speed caterpillar vehicles, Russ. Eng. Res., 2016, vol. 36, no. 1, pp. 1–5.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • S. V. Kondakov
    • 1
    Email author
  • N. A. Vechtein
    • 1
  • N. V. Dubrovskii
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations