Advertisement

Russian Engineering Research

, Volume 39, Issue 5, pp 436–438 | Cite as

Surface Quality of AMg2 Aluminum Alloy with Ultrafine Grain Structure after Machining 2. Milling

  • A. V. FilippovEmail author
  • S. Yu. Tarasov
  • O. A. Podgornykh
  • N. N. Shamarin
  • E. O. Filippova
  • A. V. Vorontsov
Article
  • 4 Downloads

Abstract

The influence of cutting (milling) on the surface roughness and undulation of AMg2 aluminum alloy with regular and ultrafine grain structure is considered. In the machining of materials with ultrafine grain structure, the surface quality is better than for materials with regular grain structure.

Keywords:

intense plastic deformation machining cutting milling ultrafine grain structure aluminum alloys surface quality 2D parameters 

Notes

FUNDING

The work was supported by the Russian Science Fund, project no. 17-79-10013.

REFERENCES

  1. 1.
    Valiev, R., Islamgaliev, R., and Alexandrov, I., Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Res., 2000, vol. 45, no. 2, pp. 103–189.CrossRefGoogle Scholar
  2. 2.
    Tarasov, S.Yu., Filippov, A.V., Kolubaev, E.A., and Kalashnikova, T.A., Adhesion transfer in sliding a steel ball against an aluminum alloy, Tribol. Int., 2017, vol. 115, pp. 191–198.CrossRefGoogle Scholar
  3. 3.
    Lychagin, D.V., Filippov, A.V., Novitskaia, O.S., et al., Friction-induced slip band relief of Hadfield steel single crystal oriented for multiple slip deformation, Wear, 2017, vols. 374–375, pp. 5–14.CrossRefGoogle Scholar
  4. 4.
    Lychagin, D.V., Filippov, A.V., Kolubaev, E.A., Novitskaia, O.S., Chumlyakov, Y.I., and Kolubaev, A.V., Dry sliding of Hadfield steel single crystal oriented to deformation by slip and twinning: deformation, wear, and acoustic emission characterization, Tribol. Int., 2018, vol. 119, pp. 1–18.CrossRefGoogle Scholar
  5. 5.
    Kolubaev, A.V., Zaikina, A.A., Sizova, O.V., et al., On the similarity of deformation mechanisms during friction stir welding and sliding friction of the AA5056 alloy, Russ. Phys. J., 2018, vol. 60, no. 12, pp. 2123–2129.CrossRefGoogle Scholar
  6. 6.
    Kuznetsov, V.P., Smolin, I.Y., Dmitriev, A.I., et al., Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel, Surf. Coat. Technol., 2016, vol. 285, pp. 171–178.CrossRefGoogle Scholar
  7. 7.
    Filippov, A.V., Tarasov, S.Y., Fortuna, S.V., et al., Microstructural, mechanical and acoustic emission-assisted wear characterization of equal channel angular pressed (ECAP) low stacking fault energy brass, Tribol. Int., 2018, vol. 123, pp. 273–285.CrossRefGoogle Scholar
  8. 8.
    Filippov, A.V. and Gorbatenko, V.V., Influence of rake angle tool on plastic deformation in chip formation when cutting, Appl. Mech. Mater., 2014, vol. 682, pp. 525–529.CrossRefGoogle Scholar
  9. 9.
    Filippov, A.V., Cut-layer cross section in oblique turning, Russ. Eng. Res., 2014, vol. 34, no. 11, pp. 718–721.CrossRefGoogle Scholar
  10. 10.
    Filippov, A.V. and Proskokov, A.V., Analysis of chipping during metal cutting by digital correlative speckle pattern interferometry, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2014, no. 2, pp. 100–113.Google Scholar
  11. 11.
    Korovin, G.I., Filippov, A.V., Proskokov, A.V., and Gorbatenko, V.V., Cutting edge geometry effect on plastic deformation of titanium alloy, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 125, art. ID 012012.Google Scholar
  12. 12.
    Filippov, A.V., Nikonov, A.Y., Rubtsov, V.E., et al., Vibration and acoustic emission monitoring the stability of peakless tool turning: experiment and modeling, J. Mater. Process. Technol., 2017, vol. 246, pp. 224–234.CrossRefGoogle Scholar
  13. 13.
    Filippov, A.V., Rubtsov, V.E., Tarasov, S.Y., et al., Detecting transition to chatter mode in peakless tool turning by monitoring vibration and acoustic emission signals, Int. J. Adv. Manuf. Technol., 2017.  https://doi.org/10.1007/s00170-017-1188-y
  14. 14.
    Filippov, A.V., Rubtsov, V.E., and Tarasov, S.Y., Acoustic emission study of surface deterioration in tribocontacting, Appl. Acoust., 2017, vol. 117, pp. 106–112.CrossRefGoogle Scholar
  15. 15.
    Alfyorova, E.A. and Lychagin, D.V., Deformation relief in crystals as a way of stress relaxation, Lett. Mater., 2017, vol. 7, no. 2, pp. 155–159.CrossRefGoogle Scholar
  16. 16.
    Lychagin, D.V. and Alfyorova, E.A., Slip as the basic mechanism for formation of deformation relief structural elements, Phys. Solid State, 2017, vol. 59, no. 7, pp. 1433–1439.CrossRefGoogle Scholar
  17. 17.
    Alfyorova, E.A. and Lychagin, D.V., Self-organization of plastic deformation and deformation relief in FCC single crystals, Mech. Mater., 2018, vol. 117, pp. 202–213.CrossRefGoogle Scholar
  18. 18.
    Filippov, A.V., Filippova, E.O., and Chazov, P.A., Cutting-force components in turning by tools with no cutting tip, Russ. Eng. Res., 2016, vol. 36, no. 12, pp. 1040–1043.CrossRefGoogle Scholar
  19. 19.
    Filippov, A.V., Cut-layer cross section in oblique turning by a single-edge tool with a curved front surface, Russ. Eng. Res., 2015, vol. 35, no. 5, pp. 381–384.CrossRefGoogle Scholar
  20. 20.
    Filippov, A.V., Cut-layer cross section in oblique turning by a single-edge tool with a curved rear surface, Russ. Eng. Res., 2015, vol. 35, no. 5, pp. 385–388.CrossRefGoogle Scholar
  21. 21.
    Filippov, A.V. and Filippova, E.O., Estimating the cutting force when skiving with a radius cutter, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 91, no. 1, art. ID 012060.Google Scholar
  22. 22.
    Filippova, E.O. and Filippov, A.V., Experimental estimation of chip shrinkage under cup-tip cutting with straight and radius cutters, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 91, no. 1, art. ID 012061.Google Scholar
  23. 23.
    Huang, B., Kaynak, Y., Arvin, C., and Jawahir, I.S., Improved surface integrity from cryogenic machining of Al 7050–T7451 alloy with ultrafine-grained structure, Adv. Mater. Process. Technol., 2015, vol. 1, pp. 361–374.Google Scholar
  24. 24.
    Bayat Asl, Y., Meratian, M., Emamikhah, A., et al., Mechanical properties and machinability of 6061 aluminum alloy produced by equal-channel angular pressing, Proc. Inst. Mech. Eng., Part B, 2015, vol. 229, pp. 1302–1313.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. V. Filippov
    • 1
    • 2
    Email author
  • S. Yu. Tarasov
    • 1
    • 2
  • O. A. Podgornykh
    • 1
  • N. N. Shamarin
    • 1
  • E. O. Filippova
    • 1
  • A. V. Vorontsov
    • 2
  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations