Advertisement

Russian Engineering Research

, Volume 39, Issue 5, pp 399–406 | Cite as

Fuzzy Cognitive Model for Identification of Destabilizing Factors

  • O. N. AndreevaEmail author
  • E. V. Kurnasov
Article
  • 2 Downloads

Abstract

A fuzzy cognitive model of industrial emergencies is proposed. The model permits analysis of possible measures for risk reduction and the elimination of emergencies and accidents at industrial enterprises. The relationships among and within groups of concepts in the fuzzy cognitive model are established. The applicability of the new fuzzy cognitive model is discussed.

Keywords:

cognitive model fuzzy logic production electronics industry monitoring risk assessment industrial emergencies accidents 

Notes

REFERENCES

  1. 1.
    Andreeva, O.N., Fuzzy ontological model for the monitoring of technogenic disturbances, Vopr. Radioelektron., 2016, no. 9, pp. 103–107.Google Scholar
  2. 2.
    Andreeva, O.N., Risk monitoring of technogenic violations and emergency situations, Naukoemkie Tekhnol., 2017, vol. 18, no. 3, pp. 85–91.Google Scholar
  3. 3.
    Borisov, V.V., Kruglov, V.V., and Fedulov, A.S., Nechetkie modeli i seti (Fuzzy Models and Networks), Moscow: Goryachaya Liniya-Telekom, 2012.Google Scholar
  4. 4.
    Zuev, V.V., Shmeleva, A.G., Kalenyuk, I.V., and Rumyantsev, R.A., Software for analysis of irreversible events in constructions and buildings under dynamic loads, Vestn. Mosk. Gos. Tekhnol. Univ., MIREA, 2015, nos. 3–2 (8), pp. 99–109.Google Scholar
  5. 5.
    Romanov, A., Romanov, M., Kharchenko, A., and Kholopov, V., Unified architecture of execution level hardware and software for discrete machinery manufacturing control systems, Proc. 2016 IEEE Student Conf. on Research and Development (SCOReD), Piscataway, NJ: Inst. Electr. Electron. Eng., 2016, p. 7810088.  https://doi.org/10.1109/SCORED.2016.7810088
  6. 6.
    Romanov, M.P., Romanov, A.M., Kashirskaya, E.N., et al., A novel architecture for the executive-level control systems for a discrete machinery production, Mekhatronika, Avtom., Upr., 2017, vol. 18, no. 1, pp. 64–72.Google Scholar
  7. 7.
    Chizhikov, V.I., Engineering of elastic kinematic joint of hingeless manipulator for technological operations in shielded environment, Avtom. Sovrem. Tekhnol., 2013, no. 5, pp. 32–40.Google Scholar
  8. 8.
    Albagachiev, A.Yu. and Kushnir, A.P., New generation devices for water jet processing, Trudy IV Mezhdunarodnoi nauchnoi konferentsii “Fundamental’nye issledovaniya i innovatsionnye tekhnologii v mashinostroenii” (Proc. IV Int. Sci. Conf. “Fundamental Studies and Innovative Technologies in Machine Engineering”), Moscow: Spektr, 2015, pp. 24–27.Google Scholar
  9. 9.
    Silov, V.B., Prinyatie strategicheskikh reshenii v nechetkoi obstanovke v politike, makroekonomike, sotsiologii, menedzhmente, meditsine, ekologii (Strategic Decision-Making in Fuzzy Environment in Policy, Macroeconomics, Sociology, Management, Medicine, and Ecology), Moscow: INPRO-Press, 1995.Google Scholar
  10. 10.
    Festinger, L., A Theory of Cognitive Dissonance, Redwood City, CA: Stanford Univ. Press, 1957.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.AO Concern Morinsis-AgatMoscowRussia
  2. 2.MIREA—Russian Technological UniversityMoscowRussia

Personalised recommendations