Advertisement

Russian Engineering Research

, Volume 39, Issue 4, pp 283–287 | Cite as

Predicting the Fatigue Limit of Surface-Hardened Parts with Stress Concentrators

  • V. F. PavlovEmail author
  • A. S. Bukatyi
  • O. Yu. Semenova
Article
  • 3 Downloads

Abstract

The possibility of predicting the fatigue limit of surface-hardened steel 20 with semicircular notches is considered: (1) on the basis of the residual stress at the surface of the cut; (2) on the basis of the integral mean residual stress over the thickness of the surface layer in the most hazardous cross section, which is equal to the critical depth for fatigue-crack propagation. The second approach proves more accurate. Experiments confirm that the critical depth for fatigue-crack propagation depends on the size of the most hazardous cross section.

Keywords:

surface hardening stress concentrators fatigue limit residual stress integral mean residual stress 

Notes

ACKNOWLEDGMENTS

Financial support was provided by the Russian Ministry of Education and Science as part of the program for improving the competitiveness of Samara State Aerospace University between 2013 and 2020.

REFERENCES

  1. 1.
    Ivanov, S.I. and Pavlov, V.F., The effect of residual stresses and cold working on fatigue strength, Strength Mater., 1976, vol. 8, no. 5, pp. 529–531.CrossRefGoogle Scholar
  2. 2.
    Kravchenko, B.A. and Mitryaev, K.F., Obrabotka i vynoslivost’ vysokoprochnykh materialov (Processing and Strength of Highly Refractory Materials), Kuibyshev: Kuibyshev. Knizhn. Izd., 1968.Google Scholar
  3. 3.
    Serensen, S.V., Borisov, S.P., and Borodin, N.A., Evaluation of the fatigue resistance of surface-hardened specimens with residual-stress kinetics taken into account, Strength Mater., 1969, vol. 1, no. 2, pp. 113–116.CrossRefGoogle Scholar
  4. 4.
    Turovskii, M.L. and Shifrin, N.M., Concentration of stresses in the surface layer of cemented steel, Vestn. Mashinostr., 1970, no. 11, pp. 37–40.Google Scholar
  5. 5.
    Ivanov, S.I. and Pavlov, V.F., Influence of residual stresses on the durability of non-hardened material, in Voprosy prikladnoi mekhaniki v aviatsionnoi tekhnike (Applied Mechanics in Aviation Technologies), Kuibyshev: Kuibyshevsk. Aviats. Inst., 1973, no. 66, pp. 70–73.Google Scholar
  6. 6.
    Shkol’nik, L.M. and Devyatkin, V.P., Increasing the strength of gears by bead-blasting strain hardning, Vestn. Mashinostr., 1950, no. 12, pp. 7–12.Google Scholar
  7. 7.
    Turovskii, M.L. and Novik, R.A., Hardening rolling of nitrided steel parts, Vestn. Mashinostr., 1970, no. 1, pp. 39–42.Google Scholar
  8. 8.
    Kudryavtsev, P.I., Nerasprostranyayushchiesya ustalostnye treshcheny (Non-Propagating Fatigue Cracks), Moscow: Mashinostroenie, 1982.Google Scholar
  9. 9.
    Serensen, S.V., Kogaev, V.P., and Shneiderovich, R.M., Nesushchaya sposobnost’ i raschet detalei na prochnost’ (Bearing Ability and Calculation of Machine Parts for Strength), Moscow: Mashinostroenie, 1975.Google Scholar
  10. 10.
    Pavlov, V.F., Relationship of residual stresses and maximum durability under concentrated stresses, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 1986, no. 8, pp. 29–32.Google Scholar
  11. 11.
    Ivanov, S.I., Shatunov, M.P., and Pavlov, V.F., Effect of residual stresses on durability of samples with insection, in Voprosy prochnosti elementov aviatsionnykh konstruktsii (Durability of the Elements of Aviation Constructions), Kuibyshev: Kuibyshevsk. Aviats. Inst., 1974, no. 1, pp. 88–95.Google Scholar
  12. 12.
    Pavlov, V.F., Kirpichev, V.A., and Vakulyuk, V.S., Prognozirovanie soprotivleniya ustalosti poverkhnostno-uprochanennykh detalei po ostatochnym napryazheniyam (Forecasting of Fatigue Resistance of Surface-Hardened Parts by Residual Stresses), Samara: Samar. Nauchn. Tsentr, Ross. Akad. Nauk, 2012.Google Scholar
  13. 13.
    Ivanov, S.I., Determination of residual stresses in a cylinder by the method of rings and strips, in Ostatochnye napryazheniya (Residual Stresses), Kuibyshev: Kuibyshevsk. Aviats. Inst., 1971, no. 48, pp. 179–183.Google Scholar
  14. 14.
    Ivanov, S.I. and Grigor’eva, I.V., Analysis of residual stresses in a cylinder by removal of surface part, in Voprosy prochnosti elementov aviatsionnykh konstruktsii (Durability of the Elements of Aviation Constructions), Kuibyshev: Kuibyshevsk. Aviats. Inst., 1971, no. 48, pp. 179–183.Google Scholar
  15. 15.
    Radchenko, V.P. and Pavlov, V.F., Maximum value of compressing residual stresses during surface hardening of the parts, in Prochnost’ materialov i elementov konstruktsii (Durability of Materials and Elements of Constructions), Kyiv: Inst. Probl. Prochn. im. G.S. Pisarenko, Nats. Akad. Nauk Ukr., 2011, pp. 354–357.Google Scholar
  16. 16.
    Filatov, E.Ya. and Pavlovskii, V.E., Universal’nyi kompleks mashin dlya ispytaniya materialov i konstruktsii na ustalost’ (Universal Complex of Machines for Testing of Materials and Constructions for Fatigue), Kiev: Naukova Dumka, 1985.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • V. F. Pavlov
    • 1
    Email author
  • A. S. Bukatyi
    • 1
  • O. Yu. Semenova
    • 1
  1. 1.Korolev Samara State Aerospace UniversitySamaraRussia

Personalised recommendations