Advertisement

Russian Engineering Research

, Volume 39, Issue 3, pp 259–261 | Cite as

Determining the Maximum-Performance Temperature of Hard-Alloy Cutting Inserts on the Basis of Their Electromagnetic Properties

  • E. V. ArtamonovEmail author
  • A. M. TveryakovEmail author
  • A. S. ShtinEmail author
Article

Abstract

The temperature dependence of the electromagnetic properties of hard tool alloys is studied experimentally. Temperature intervals corresponding to maximum alloy performance are identified. A method is proposed for determining the maximum-performance temperature of hard-alloy cutting inserts from the temperature dependence of the electromagnetic properties.

Keywords:

hard tool alloys cutting tool performance electromagnetic properties 

Notes

REFERENCES

  1. 1.
    Bobrov, V.F., Osnovy teorii rezaniya metallov (Fundamental Theory of Metal Cutting), Moscow: Mashinostroenie, 1975.Google Scholar
  2. 2.
    Vasin, S.A., Vereshchaka, A.S., and Kushner, V.S., Rezanie metallov. Termomekhanicheskii podkhod k sisteme vzaimosvyazei pri rezanii: Uchebnik dlya tekhnicheskikh vuzov (Cutting of Metals. Thermomechanical Approach to the Relationships during Cutting: Manual for Higher Education Technical Institutions), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2001.Google Scholar
  3. 3.
    Vereshchaga, A.S., Rabotosposobnost’ rezhushchego instrumenta s iznosostoikimi pokrytiyami (Performance of Cutting Tool with Wear-Resistant Coatings), Moscow: Mashinostroenie, 1993.Google Scholar
  4. 4.
    Skhirtladze, A.G., Grechishnikov, V.A., Grigor’ev, S.N., and Korotkov, I.A., Proektirovanie metalloobrabatyvayushchikh instrumentov: uchebnoe posobie (Design of Metal Processing Tools: Manual), St. Petersburg: Lan’, 2015.Google Scholar
  5. 5.
    Zorev, N.N. and Fetisov, Z.M., Obrabotka rezaniem tugoplavkikh splavov (Cutting of Refractory Alloys), Moscow: Mashinostroenie, 1966.Google Scholar
  6. 6.
    Loladze, T.N., Prochnost’ i iznosostoikost’ rezhushchego instrumenta (Durability and Wear-Resistance of Cutting Tool), Moscow: Mashinostroenie, 1982.Google Scholar
  7. 7.
    Makarov, A.D., Optimizatsiya protsessov rezaniya (Optimization of Cutting Processes), Moscow: Mashinostroenie, 1976.Google Scholar
  8. 8.
    Petrushin, S.I., Danilenko, B.D., and Retyunskii, O.Yu., Optimizatsiya svoistv materiala v kompozitsionnoi rezhushchei chasti lezviinykh instrumentov: uchebnoe posobie (Optimization of Material Properties in Composite Cutting Part of Blade Tools: Manual), Tomsk: Tomsk. Politekh. Inst., 1999.Google Scholar
  9. 9.
    Poletika, M.F. and Kozlov, V.N., Contact loads and temperatures on worn tools, in Progressivnye tekhnologicheskie portsessy v mashinostroenii (Advanced Technological Processes in Machine Engineering), Tomsk: Tomsk. Politekh. Univ., 1997, pp. 18–21.Google Scholar
  10. 10.
    Reznikov, A.N. and Reznikov, L.A., Teplovye protsessy v tekhnologicheskikh sistemakh (Thermal Processes in Technological Systems), Moscow: Mashinostroenie, 1990.Google Scholar
  11. 11.
    Rozenberg, A.M. and Eremin, A.N., Elementy teorii protsessa rezaniya metallov (The Elements of the Cutting Theory of Metals), Moscow: Mashgiz, 1956.Google Scholar
  12. 12.
    Silin, S.S., Metod podobiya pri rezanii metallov (Similarity Method in Metal Cutting), Moscow: Mashinostroenie, 1979.Google Scholar
  13. 13.
    Starkov, V.K., Fizika i optimizatsiya rezaniya materialov (Physics and Optimization of Cutting of Materials), Moscow: Mashinostroenie, 2009.Google Scholar
  14. 14.
    Grigor’ev, S.N., Metody povysheniya stoikosti rezhushchego instrumenta: uchebnik dlya vuzov (Strength Improvement of Cutting Tools: Manual for Higher Education Students), Moscow: Mashinostroenie, 2011.Google Scholar
  15. 15.
    Zorev, N.N. and Uteshev, M.H., Untersuchung der Kintakt-spannunger auf den Arbeits-flachen des Werkzeugs miteiner Schneidenabrundung, Ber. Int. Forsch. Mechanische Prod. Tech., 1971, vol. 20, no. 1, pp. 31–32.Google Scholar
  16. 16.
    Shalamov, V.G., Savel’ev, D.A., and Smetanin, S.D., Producing powder by rotary grinding, Russ. Eng. Res., 2013, vol. 33, no. 3, pp. 133–135.CrossRefGoogle Scholar
  17. 17.
    Nguen Van Kyong and Yamnikov, A.S., Optimization of cutting regimes, Fundam. Prikl. Tekh. Tekhnol., 2012, no. 1 (291), pp. 56–63.Google Scholar
  18. 18.
    Artamonov, E.V., Prochnost’ i rabotosposobnost’ smennykh tverdoslavnykh plastin sbornykh rezhushchikh instrumentov (Strength and Performance of Replaceable Hard-Alloy Plates in Composite Tools), Tyumen: Tyumen. Gos. Neftegaz. Univ., 2003, pp. 101–104.Google Scholar
  19. 19.
    Vasilega, D.S. and Zyryanov, V.A., Analysis of possible application of temperature dependences of processed materials’ physical and mechanical properties to define the maximum workability temperature, Key Eng. Mater., 2017, vol. 737, pp. 114–118.CrossRefGoogle Scholar
  20. 20.
    Artamonov, E.V., Vasilega, D.S., and Tveryakov, A.M., Determining the maximum-performance temperature of hard-alloy cutting plates based on electric conductivity, Zavod. Lab., Diagn. Mater., 2014, vol. 80, no. 9, pp. 36–39.Google Scholar
  21. 21.
    Artamonov, E.V., Kuskov, V.N., Vasilega, D.S., and Tveryakov, A.M., RF Patent 2468894, Byull. Izobret., 2012, no. 34.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Tyumen Industrial UniversityTyumenRussia

Personalised recommendations