Russian Engineering Research

, Volume 39, Issue 2, pp 133–136 | Cite as

Electrospark Dispersion in Nanopowder Production for Additive Technologies

  • V. V. Sleptsov
  • A. V. SavkinEmail author
  • E. A. Trunova
  • D. Yu. Kukushkin
  • A. O. Diteleva


A laboratory electrospark system permits the creation of an overvoltage in the gap between dispersible electrodes. Conductive nanopowder may be produced by an electrospark method with a considerable overvoltage in the electrode gap. The production of small powder batches for additive technology by this means is promising and economical.


nanoparticles nanopowder additive technology powder composites electrospark dispersion 



Financial support was provided by the Russian Ministry of Education and Science (project 8.7552.2017/8.9).


  1. 1.
    Popadyuk, S., Five features of metal powders for 3D printing, Fotonika, 2018, vol. 12, no. 3, pp. 308–311.Google Scholar
  2. 2.
    Scientists from Tomsk are developing new national materials for 3D printing: news, 2017. http:// Accessed December 26, 2017.Google Scholar
  3. 3.
    Makarov, M., Industrial 3D printers are expensive toy or real tool for modernization of engineering industry in Russia? Fotonika, 2015, no. 5 (53), pp. 20–32.Google Scholar
  4. 4.
    Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Magnetic nanoparticles: preparation, structure and properties, Russ. Chem. Rev., 2005, vol. 74, no. 6, pp. 489–520.CrossRefGoogle Scholar
  5. 5.
    Lu, A.-H., Salabas, E.L., and Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem., 2007, vol. 46, no. 8, pp. 1222–1244.CrossRefGoogle Scholar
  6. 6.
    Rajput, N., Methods of preparation of nanoparticles—a review, Int. J. Adv. Eng. Technol., 2015, vol. 7, no. 4, pp. 1806–1811.Google Scholar
  7. 7.
    Berkowitz, A.E. and Walter, J.L., Spark erosion: a method for producing rapidly quenched fine powders, J. Mater. Res., 1987, vol. 2, no. 2, pp. 277–288.CrossRefGoogle Scholar
  8. 8.
    Hong, J.I., Parker, F.T., Solomon, V.C., et al., Fabrication of spherical particles with mixed amorphous/crystalline nanostructured cores and insulating oxide shells, J. Mater. Res., 2008, vol. 23, pp. 1758–1763.CrossRefGoogle Scholar
  9. 9.
    Nguyen, P.K., Lee, K.H., Moon, J., et al., Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance, Nanotechnology, 2012, vol. 23, no. 41.Google Scholar
  10. 10.
    Carrey, J., Radousky, H.B., and Berkowitz, A.E., Spark-eroded particles: influence of processing parameters, J. Appl. Phys., 2014, vol. 95, no. 3, pp. 823–829.CrossRefGoogle Scholar
  11. 11.
    Monastyrsky, G., Nanoparticles formation mechanisms through the spark erosion of alloys in cryogenic liquids, Nanoscale Res. Lett., 2015, vol. 10, p. 503.CrossRefGoogle Scholar
  12. 12.
    Shervani-Tabar, M.T. and Mobadersany, N., Numerical study on the hydrodynamic behavior of the dielectric fluid around an electrical discharge generated bubble in EDM, Theor. Comput. Fluid Dyn., 2013, vol. 27, pp. 701–719.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • V. V. Sleptsov
    • 1
  • A. V. Savkin
    • 1
    Email author
  • E. A. Trunova
    • 1
  • D. Yu. Kukushkin
    • 1
  • A. O. Diteleva
    • 1
  1. 1.Moscow Aviation InstituteMoscowRussia

Personalised recommendations