Advertisement

Russian Engineering Research

, Volume 39, Issue 2, pp 113–116 | Cite as

Operational Efficiency of a Shock Absorber with a Nonlinearly Deforming Path Limiter under Random Perturbations

  • A. S. Gusev
  • L. V. ZinchenkoEmail author
  • S. A. Starodubtseva
Article

Abstract

A method is proposed for probabilistic estimates of the maximum possible spring velocity, kinetic energy, displacement, and force in shock-absorber breakdown during system operation. The use of additional rubber-like nonlinearly deforming path limiters in vehicle shock absorbers is shown to be effective.

Keywords:

probabilistic characteristics random process shock absorber path limiter breakdown reliability 

Notes

REFERENCES

  1. 1.
    Bolotin, V.V., Resurs mashin i konstruktsii (Lifetime of Machines and Construction), Moscow: Mashinostroenie, 1990.Google Scholar
  2. 2.
    Gusev, A.S., Random vibrations of deformable objects during transportation, Probl. Mashinostr. Nadezhnosti Mash., 1998, no. 1, pp. 35–43.Google Scholar
  3. 3.
    Gusev, A.S., Soprotivlenie ustalosti i zhivuchest’ konstruktsii pri sluchainykh nagruzkakh (Fatigue Resistance and Lifetime of Constructions under Random Load), Moscow: Mashinostroenie, 1989.Google Scholar
  4. 4.
    Gusev, A.S. and Naidenov, S.O., Effective estimates of transient modes of random oscillations in mechanical systems, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2013, no. 6, pp. 3–6.Google Scholar
  5. 5.
    Okopnyi, Yu.A., Radin, V.P., and Chirkov, V.P., Kolebaniya lineinykh sistem (Oscillation of Linear Systems), Moscow: Spektr, 2014.Google Scholar
  6. 6.
    Gusev, A.S., Veroyatnostnye metody v mekhanike mashin i konstruktsii (Probabilistic Methods in Mechanics of Machines and Constructions), Moscow: Mosk. Gos. Tekh. Univ. im. N. E. Baumana, 2009.Google Scholar
  7. 7.
    Whitney, C.A., Random Process in Physical Systems, New York: Willey, 1990.Google Scholar
  8. 8.
    Kogaev, V.P., Makhutov, N.A., and Gusenkov, A.P., Raschety detalei mashin i konstruktsii na prochnost’ i dolgovechnost’ (Calculation of Machine Parts and Constructions for Durability and Service Life), Moscow: Mashinostroenie, 1985.Google Scholar
  9. 9.
    Gusev, A.S., Teoreticheskie sonovy raschety na soprotivlenie ustalosti (Theoretical Basis for Calculation for Fatigue Resistance), Moscow: Mosk. Gos. Tekh. Univ. im. N. E. Baumana, 2014.Google Scholar
  10. 10.
    Gusev, A.S. and Naidenov, S.O., Analysis of the trajectories of non-differentiable random processes, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2014, no. 9, pp. 3–8.Google Scholar
  11. 11.
    Gusev, A.S. and Shcherbakov, V.I., Calculation of fatigue lifespan in plane stress state and random loading, Vestn. Mashinostr., 2014, no. 2, pp. 40–43.Google Scholar
  12. 12.
    Baev, A.V., Gusev, A.S., and Starodubtseva, S.A., Calculation of the shock absorber with a nonlinearly deformable stop spindle in random effects, Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Mashinostr., 1998, no. 4, pp. 36–42.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. S. Gusev
    • 1
  • L. V. Zinchenko
    • 1
    Email author
  • S. A. Starodubtseva
    • 2
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Moscow State Technical University of Automobiles and RoadsMoscowRussia

Personalised recommendations