Russian Engineering Research

, Volume 39, Issue 2, pp 137–140 | Cite as

Synthesis of Modified Potassium Polytitanates for Supercapacitor Structures

  • V. G. GoffmanEmail author
  • V. V. Sleptsov
  • S. N. Kulikov


The synthesis of new materials for supercapacitors is considered. Alloying of active dielectrics based on potassium polytitanates yields nanohybrids with specified properties and high dielectric permittivity. These materials are suitable for the construction of a new generation of supercapacitor structures.


supercapacitors nanomaterials potassium polytitanates dielectric permittivity 



Financial support was provided by the Russian Ministry of Education and Science (project identifier RFMEFI57717X0275).


  1. 1.
    Sleptsov, V.V., Kulikov, S.N., Kukushkin, D.Yu., and Vu Dyk Khan, Thin-film coatings on the surface of highly porous roll materials for capacitors, Nanoinzheneriya, 2015, no. 3, pp. 7–14.Google Scholar
  2. 2.
    Fizicheskie velichiny: Spravochnik (Physical Values: Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Ed., Moscow: Energoatomizdat, 1991.Google Scholar
  3. 3.
    Kurchatov, I.V., Segnetoelektriki (Ferroelectrics), Moscow: Gos. Izd. Tekhniko-Teor. Lit., 1933.Google Scholar
  4. 4.
    Osada, M., Takanashi, G., Li, B.W., Akatsuka, K., et al., Controlled polarizability of one-nanometer-thick oxide nanosheets for tailored, high-κ nanodielectrics, Adv. Funct. Mater., 2011, vol. 21, no. 18, pp. 3482–3487. CrossRefGoogle Scholar
  5. 5.
    Fukuda, K., Sato, J., Saida, T., et al., Fabrication of ruthenium metal nanosheets via topotactic metallization of exfoliated ruthenate nanosheets, Inorg. Chem., 2013, vol. 52, no. 5, pp. 2280–2282. CrossRefGoogle Scholar
  6. 6.
    Paek, S.-M., Oh, J.-M., and Choy, J.-H., A lattice-engineering route to heterostructured functional nanohybrids, Chem. Asian J., 2011, vol. 6, pp. 324–338.CrossRefGoogle Scholar
  7. 7.
    Sanchez-Monjaras, T., Gorokhovsky, A.V., and Escalante-Garcia, J.I., Molten salt synthesis and characterization of polytitanate ceramic precursors with varied TiO2/K2O molar ratio, J. Am. Ceram. Soc., 2008, vol. 91, no. 9, pp. 3058–3065.CrossRefGoogle Scholar
  8. 8.
    Gorokhovsky, A.V., Tretyachenko, E.V., Escalante-Garcia, J.I., Yurkov, G.Yu., and Goffman, V.G., Modified amorphous layered titanates as precursor materials to produce heterostructured nanopowders and ceramic nanocomposites, J. Alloy. Compd., 2014, vol. 586, pp. S494–S497.CrossRefGoogle Scholar
  9. 9.
    Tretyachenko, E.V., Gorokhovsky, A.V., Yurkov, G.Yu., Fedorov, F.S., Vikulova, M.A., Kovaleva, D.S., and Orozaliev, E.E., Adsorption and photo-catalytic properties of layered lepidocrocite-like quasiamorphous compounds based on modified potassium polytitanates, Particuology, 2014, vol. 17, pp. 22–28.CrossRefGoogle Scholar
  10. 10.
    Gorshkov, N.V., Goffman, V.G., Vikulova, M.A., Kovaleva, D.S., Tretyachenko, E.V., Gorokhovsky, A.V., Temperature-dependence of electrical properties for the ceramic composites based on potassium polytitanates of different chemical composition, J. Electroceram., 2018, vol. 40, no. 4, pp. 306–315.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • V. G. Goffman
    • 1
    Email author
  • V. V. Sleptsov
    • 2
  • S. N. Kulikov
    • 2
  1. 1.Gagarin Saratov State Technical UniversitySaratovRussia
  2. 2.Moscow Aviation InstituteMoscowRussia

Personalised recommendations