Russian Engineering Research

, Volume 38, Issue 12, pp 1056–1062 | Cite as

Controlling the State of Machine Tools

  • A. K. Tugengol’dEmail author
  • V. P. DimitrovEmail author
  • L. V. BorisovaEmail author
  • R. N. VoloshinEmail author
  • M. Yu. SolomykinEmail author


Globally, manufacturers make great efforts to maintain the performance of industrial equipment. Developers and researchers are interested in automated approaches to maintaining the performance of equipment, especially at enterprises with high degrees of computerization and comprehensive information systems. In the present work, a new approach is outlined: an autonomous control system for maintaining the condition of metal-cutting machines. This approach is based on prior work in the field and permits maintenance on the basis of autonomous control of the state of machine tools. The structure of a system with the following generalized control functions is presented: decision making; and the issuing of commands on the basis of built-in resources. The formulation of control decisions employs the theory of fuzzy sets and fuzzy logic. By means of the ANFIS fuzzy network system, the autonomy of state control of the machine tool may be assessed. Criticality assessment of the condition of machine tools and their components is important in making decisions as to the setup of systems controlling the condition of equipment at enterprises, with assessment of their efficiency. In the monitoring subsystem, provision is made for assessment of the diagnostic results, prediction, and the generation of control decisions so as to prevent disruptions of machine-tool operation.


autonomous control monitoring control systems machine-tool performance 



  1. 1.
    Mal’tsev, A.I. and Mal’tsev, A.A., Monitoring tekhnicheskogo sostoyaniya krupnykh mashin: uchebnoe posobie (Monitoring of Technical Status of Large Machines: Manual), Elektrostal: DAMO, 1998.Google Scholar
  2. 2.
    GOST (State Standard) R ISO 17359–2009: Condition Monitoring and Diagnostics of Machines. General Guidelines on Condition Monitoring and Diagnostics Procedures, Moscow: Standartinform, 2010.Google Scholar
  3. 3.
    Nikitin, Yu.R. and Abramov, I.V., Development of the diagnostic system of CNC machines, Mekhatron., Avtom. Uprav., 2011, no. 4, pp. 32–35.Google Scholar
  4. 4.
    Muller, A., Suhner, M.-C., and Iung, B., Proactive maintenance for industrial system operation based on a formalized prognosis process, Reliab. Eng. Syst. Saf., 2008, vol. 93, pp. 234–253.CrossRefGoogle Scholar
  5. 5.
    Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., and Liao, H., Intelligent prognostics tools and e-maintenance, Comp. Ind., 2006, vol. 57, pp. 476–489.CrossRefGoogle Scholar
  6. 6.
    Djurdjanovic, D., Lee, J., and Ni, J., Watchdog agent—an infotronics-based prognostics approach for product performance degradation assessment and prediction, Adv. Eng. Inf., 2001, vol. 7, no. 3, pp. 109–125.Google Scholar
  7. 7.
    Moore, W.J. and Starr, A.G., An intelligent maintenance system for continuous cost-based prioritization of maintenance activities, Comp. Ind., 2006, vol. 6, pp. 595–606.CrossRefGoogle Scholar
  8. 8.
    Kruglova, T.N. and Glebov, N.A., Diagnostirovanie i prognozirovanie tekhnicheskogo sostoyaniya mekhatronnykh modulei dvizheniya tekhnologicheskogo oborudovaniya. monografiya (Diagnostics and Forecasting of Technical State of Mechatronic Modules of the Motion of Technological Equipment: Monograph), Novocherkassk, 2011.Google Scholar
  9. 9.
    Wu, X., Li, Y., Lundell, T.D., and Guru, A.K., Integrated prognosis of AC servo motor driven linear actuator using hidden semi-Markov models, Proc. IEEE Int. Electric Machines and Drives Conf., Piscataway, NJ: Inst. Electr. Electron. Eng., 2009, pp. 1408–1413.Google Scholar
  10. 10.
    Filippetti, F., Franceschini, G., Tassoni, C., and Vas, P., Recent developments of induction motor drives fault diagnosis using AI techniques, IEEE Trans. Ind. Electron., 2000, vol. 47, pp. 994–1004.CrossRefGoogle Scholar
  11. 11.
    Arthur, N. and Penman, J., Induction machine condition monitoring with higher order spectra, IEEE Trans. Ind. Electron., 2000, vol. 47, pp. 1031–1041.CrossRefGoogle Scholar
  12. 12.
    Nejjari, H. and Benbouzid, M., Monitoring and diagnosis of induction motors electrical faults using a current Park’s vector pattern learning approach, IEEE Trans. Ind. Appl., 2000, vol. 36, pp. 730–735.CrossRefGoogle Scholar
  13. 13.
    Yang, B., Jeong, S., Oh, Y., and Tan, A., Case-based reasoning system with Petri nets for induction motor fault diagnosis, Expert Syst. Appl., 2004, vol. 27, pp. 301–311.CrossRefGoogle Scholar
  14. 14.
    Lee, J., Wu, F., Zhao, W., and Ghaffari, M., Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications, Mech. Syst. Signal Process., 2014, vol. 42, pp. 314–334.CrossRefGoogle Scholar
  15. 15.
    Swanson, D.C., A general prognostic tracking algorithm for predictive maintenance, Proc. IEEE Aerospace Conf., Piscataway, NJ: Inst. Electr. Electron. Eng., 2001, vol. 6, pp. 62971–62977.Google Scholar
  16. 16.
    Swanson, D.C., Spencer, J.M., and Arzoumanian, S.H., Prognostic modeling of crack growth in a tensioned steel band, Mech. Syst. Signal Process., 2000, vol. 14, pp. 789–803.CrossRefGoogle Scholar
  17. 17.
    Erl, T., Service-Oriented Architecture: Concepts, Technology, and Design, Upper Saddle River: Prentice Hall, 2005. ISBN 0-13-185858-0Google Scholar
  18. 18.
    Bangemann, T., Reboul, D., Scymanski, J., et al., PROTEUSAn integration platform for distributed maintenance systems, Comput. Ind., 2006, vol. 57, no. 6, pp. 539–551.CrossRefGoogle Scholar
  19. 19.
    Lebold, M. and Thurston, M., Open standards for condition-based maintenance and prognostic systems, Proc. MARCON 2001: Fifth Annual Maintenance and Reliability Conf., Gatlinburg, 2001.Google Scholar
  20. 20.
    Karray, M. H., Chebel-Morello, B., Lang, C., and Zerhouni, N., A component based system for S-maintenance, 9th IEEE Int. Conf. on Industrial Informatics, INDIN’11, Piscataway, NJ: Inst. Electr. Electron. Eng., 2011, vol. 7, pp. 1–8Google Scholar
  21. 21.
    Muller, A., Marquez, C., and Iung, B., On the concept of e-maintenance: review and current research, J. Reliab. Eng. Syst. Saf., 2008, vol. 93, pp. 1165–1187.CrossRefGoogle Scholar
  22. 22.
    A tool for time management, Silovye Mash., 2013, no. 14.Google Scholar
  23. 23.
    GOST (State Standard) R ISO 13379–2009: Condition Monitoring and Diagnostics of Machines. General Guidelines on Data Interpretation and Diagnostics Techniques, Moscow: Standartinform, 2009.Google Scholar
  24. 24.
    Zhdanov, A.A., Avtonomnyi iskusstvennyi intellekt (Autonomous Artificial Intelligence), Moscow: BINOM, Laboratoriya Znanii, 2012, 3rd ed.Google Scholar
  25. 25.
    Tugengol’d, A.K., Voloshin, R.N., and Yushchenko, S.V., E-MIND MACHINE module in intelligent machine monitoring system, Mezhdunar. Nauchno-Issled. Zh., 2015, no. 9-2 (40), pp. 100–102.Google Scholar
  26. 26.
    Tugengol’d, A.K., Dimitrov, V.P., Izyumov, A.I., and Yusupov, A.R., Monitoring and control of tools in multifunctional machine tools, Russ. Eng. Res., 2017, vol. 37, no. 5, pp. 440–446.CrossRefGoogle Scholar
  27. 27.
    Tugengol’d, A.K. and Voloshin, R.N., Flexible monitoring of Mechatronic machines, Vestn. Donsk. Gos. Tekh. Univ., 2016, no. 4, pp. 51–58.Google Scholar
  28. 28.
    Tugengol’d, A.K., Dimitrov, V.P., Voloshin, R.N., et al., Monitoring of machine tools, Russ. Eng. Res., 2017, vol. 37, no. 8, pp. 440–446.CrossRefGoogle Scholar
  29. 29.
    Push, V.E., Pigert, R., and Sosonkin, V.L., Avtomaticheskie stanochnye sistemy (Automatic Machine Systems), Moscow: Mashinostroenie, 1982.Google Scholar
  30. 30.
    Yadchenko, A.V., Solomykin, M.Yu., Tugengol’d, A.K., et al., The structure and algorithm of the diagnostic system of the state of a multioperational machine, Sovrem. Nauchn. Issled. Razrab., 2017, no. 8 (8), pp. 232–237.Google Scholar
  31. 31.
    Hard- and software for ROBOCUTFANUC machine.пции-для-cтaнкoв-robocut. Accessed October 20, 2017.Google Scholar
  32. 32.
    Tugengol’d, A.K. and Voloshin, R.N., Criteria for analysis of the state of technological machines, 10‑i Mezhdunarodnaya nauchno-prakticheskaya konferentsiya v ramkakh 20-i mezhdunarodnoi agropromyshlennoi vystavki Interagromash-2017 “Sostoyanie i perspektivy razvitiya sel’skokhozyaistvennogo mashinostroeniya” (Tenth Int. Sci.-Pract. Conf. within Twentieth Int. Agroindustrial Exhibition Interagromash-2017 “The State and Prospects of Agroindustrial Machine Engineering), Rostov-on-Don, 2017, pp. 288–292.Google Scholar
  33. 33.
    GOST (State Standard) R ISO 13379-1–2015: Condition Monitoring and Diagnostics of Machines. Data Interpretation and Diagnostics Techniques. Part 1. General Guidelines, Moscow: Standartinform, 2015.Google Scholar
  34. 34.
    GOST (State Standard) R ISO 13381-1–2016: Condition Monitoring and Diagnostics of Machines. Machine Condition Prognosis. Part 1. General Guidelines, Moscow: Standartinform, 2016.Google Scholar
  35. 35.
    ISO 13381-1:2015: Condition Monitoring and Diagnostics of Machines Prognostics—Part 1: General Guidelines (IDT), Geneva: Int. Org. Stand., 2015.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Don State Technical UniversityRostov-on-DonRussia
  2. 2.Rostov Research Institute of Radio and CommunicationsRostov-on-DonRussia

Personalised recommendations