Advertisement

Russian Engineering Research

, Volume 38, Issue 12, pp 1067–1070 | Cite as

Surface Quality of AMg2 Aluminum Alloy with Ultrafine Grain Structure after Machining. 1. Turning

  • A. V. FilippovEmail author
  • S. Yu. Tarasov
  • N. N. Shamarin
  • O. A. Podgornykh
  • E. O. Filippova
Article
  • 7 Downloads

Abstract

The influence of cutting on the surface roughness and undulation of AMg2 aluminum alloy with regular and ultrafine grain structure is considered. The quantitative influence of profile filters on its surface roughness and undulation is established, on the basis of 2D parameters. In the machining of materials with ultrafine grain structure, the surface quality is better than for materials with regular grain structure.

Keywords:

intense plastic deformation machining cutting ultrafine grain structure aluminum alloys surface quality 2D parameters profile filters 

Notes

ACKNOWLEDGMENTS

Financial support was provided by the Russian Science Fund (project 17-79-10013).

REFERENCES

  1. 1.
    Valiev, R., Islamgaliev, R., and Alexandrov, I., Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Res., 2000, vol. 45, no. 2, pp. 103–189.CrossRefGoogle Scholar
  2. 2.
    Filippov, A.V. and Gorbatenko, V.V., Influence of rake angle tool on plastic deformation in chip formation when cutting, Appl. Mech. Mater., 2014, vol. 682, pp. 525–529.CrossRefGoogle Scholar
  3. 3.
    Filippov, A.V., Cut-layer cross section in oblique turning by a single-edge tool, Russ Eng. Res., 2014, vol. 34, no. 11, pp. 718–721.CrossRefGoogle Scholar
  4. 4.
    Filippov, A.V. and Proskokov, A.V., Analysis of chip forming in metal cutting by digital correlation speckle-interferometry, Vestn. Mosk. Gos. Tekhnol. Univ., Stankin, Ser. Mashinostr., 2014, no. 2, pp. 100–113.Google Scholar
  5. 5.
    Korovin, G.I., Filippov, A.V., Proskokov, A.V., and Gorbatenko, V.V., Cutting edge geometry effect on plastic deformation of titanium alloy, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 125, art. ID 012012.Google Scholar
  6. 6.
    Filippov, A.V., Nikonov, A.Y., Rubtsov, V.E., et al., Vibration and acoustic emission monitoring the stability of peakless tool turning: experiment and modeling, J. Mater. Process. Technol., 2017, vol. 246, pp. 224–234.CrossRefGoogle Scholar
  7. 7.
    Filippov, A.V., Rubtsov, V.E., Tarasov, S.Yu., et al., Detecting transition to chatter mode in peakless tool turning by monitoring vibration and acoustic emission signals, Int. J. Adv. Manuf. Technol., 2017, vol. 10, pp. 1–13.Google Scholar
  8. 8.
    Filippov, A.V., Rubtsov, V.E., and Tarasov, S.Yu., Acoustic emission study of surface deterioration in tribocontacting, Appl. Acoust., 2017, vol. 117, pp. 106–112.CrossRefGoogle Scholar
  9. 9.
    Alfyorova, E.A. and Lychagin, D.V., Deformation relief in crystals as a way of stress relaxation, Lett. Mater., 2017, vol. 7, no. 2, pp. 155–159.CrossRefGoogle Scholar
  10. 10.
    Lychagin, D.V. and Alfyorova, E.A., Slip as the basic mechanism for formation of deformation relief structural element, Phys. Solid State, 2017, vol. 59, no. 7, pp. 1433–1439.CrossRefGoogle Scholar
  11. 11.
    Alfyorova, E.A. and Lychagin, D.V., Self-organization of plastic deformation and deformation relief in FCC single crystals, Mech. Mater., 2018, vol. 117, pp. 202–213.CrossRefGoogle Scholar
  12. 12.
    Lychagin, D.V., Filippov, A.V., Novitskaia, O.S., et al., Friction-induced slip band relief of Hadfield steel single crystal oriented for multiple slip deformation, Wear, 2017, vols. 374–375, pp. 5–14.CrossRefGoogle Scholar
  13. 13.
    Lychagin, D.V., Filippov, A.V., Kolubaev, E.A., et al., Dry sliding of Hadfield steel single crystal oriented to deformation by slip and twinning: deformation, wear, and acoustic emission characterization, Tribol. Int., 2018, vol. 119, pp. 1–18.CrossRefGoogle Scholar
  14. 14.
    Kuznetsov, V.P., Smolin, I.Yu., Dmitriev, A.I., et al., Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel, Surf. Coat. Technol., 2016, vol. 285, pp. 171–178.CrossRefGoogle Scholar
  15. 15.
    Huang, B., Kaynak, Y., Arvin, C., and Jawahir, I.S., Improved surface integrity from cryogenic machining of Al 7050–T7451 alloy with ultrafine-grained structure, Adv. Mater. Process. Technol., 2015, vol. 1, pp. 361–374.Google Scholar
  16. 16.
    Asl, Y.B., Meratian, M., Emamikhah, A., et al., Mechanical properties and machinability of 6061 aluminum alloy produced by equal-channel angular pressing, Proc. Inst. Mech. Eng., Part B, 2015, vol. 229, pp. 1302–1313.Google Scholar
  17. 17.
    Tarasov, S.Yu., Filippov, A.V., Kolubaev, E.A., and Kalashnikova, T.A., Adhesion transfer in sliding a steel ball against aluminum alloy, Tribol. Int., 2017, vol. 115, pp. 191–198.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Filippov
    • 1
    Email author
  • S. Yu. Tarasov
    • 1
  • N. N. Shamarin
    • 1
  • O. A. Podgornykh
    • 1
  • E. O. Filippova
    • 1
  1. 1.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations