Russian Engineering Research

, Volume 38, Issue 12, pp 989–991 | Cite as

Electrophoretic Deposition of Metal Nanoclusters at the Surface of Porous Materials

  • V. V. Sleptsov
  • A. V. SavkinEmail author
  • D. Yu. KukushkinEmail author
  • A. O. Diteleva


Coating formation over the surface of a highly porous material on the basis of activated carbon fiber is considered. The coating is applied from a colloidal solution of metals, with the goal of producing electrodes and composite polymer structures. Experiments show that porous carbon materials may be metallized by means of metal nanoclusters (measuring 2–10 nm) on the basis of electrophoresis, without loss of the initial porosity.


coating formation highly porous materials colloidal metal solutions metal nanoclusters electrophoresis 



Financial support was provided by the Russian Ministry of Education and Science (project RFMEFI57717X0275).


  1. 1.
    Arico, A.S., Bruce, P., Scrosati, B., et al., Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, vol. 4, pp. 366–377.CrossRefGoogle Scholar
  2. 2.
    Huang, X., Tan, C., Yin, Z., and Zhang, H., Hybrid nanostructures based on two-dimensional nanomaterials, Adv. Mater., 2014, vol. 26, no. 14, pp. 2185–2204.CrossRefGoogle Scholar
  3. 3.
    Scrosati, B., Nanomaterials: paper powers battery breakthrough, Nat. Nanotechnol., 2007, vol. 2, pp. 598–599.CrossRefGoogle Scholar
  4. 4.
    Lee, S.W., Yabuuchi, N., Gallant, B.M., et al., High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol., 2010, vol. 5, pp. 531–537.CrossRefGoogle Scholar
  5. 5.
    Sleptsov, V.V., Elinson, V.M., Baranov, A.M., and Tereshin, S.A., Optical and electrical properties of quantum-dimensional multilayer structures based on carbon films, in Wide Band Gap Electronic Materials, Nato Science Partnership Subseries no. 3, New York: Springer-Verlag, 1995, pp. 257–264.Google Scholar
  6. 6.
    Li, X. and Wei, B., Supercapacitors based on nanostructured carbon, Nano Energy, 2013, vol. 2, no. 2, pp. 159–173.CrossRefGoogle Scholar
  7. 7.
    Pandolfo, A.G. and Hollenkamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, no. 1, pp. 11–27.CrossRefGoogle Scholar
  8. 8.
    Blomquist, N., Wells, T., Andres, B., et al., Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials, Sci. Rep., 2017, vol. 7, art. ID 39836.CrossRefGoogle Scholar
  9. 9.
    Weinstein, L. and Dash, R., Supercapacitor carbons, Mater. Today, 2013, vol. 16, no. 10, pp. 356–357.CrossRefGoogle Scholar
  10. 10.
    Dai, L., Chang, D.W., Baek, J.-B., and Lu, W., Carbon nanomaterials for advanced energy conversion and storage, Small, 2012, vol. 8, no. 8, pp. 1130–1166.CrossRefGoogle Scholar
  11. 11.
    Astakhov, M.V., Galimzyanov, R.R., Klimont, A.A., et al., Improved symmetric supercapacitive performance of binder-free PANI/carbon fiber composites, Curr. Nanosci., 2016, vol. 12, no. 1, pp. 83–89.CrossRefGoogle Scholar
  12. 12.
    Ostroukhov, N.N., Tyanginskii, A.Yu., Sleptsov, V.V., and Tserulev, M.V., Electric discharge technology of production and diagnosis of metallic hydrosols with nanosized particles, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 3, pp. 284–288.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Moscow Aviation InstituteMoscowRussia

Personalised recommendations