Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adsorption of Sulfanilamide from Aquaculture Wastewater Using Modified Activated Carbon Fiber: Equilibrium, Kinetic and Thermodynamic. Specific and Informative: Surface Modification

  • 3 Accesses

Abstract

Activated carbon fiber (ACF) was modified by sulphuric acid impregnation and employed as adsorbent for sulfanilamide (SA) from aquaculture wastewater. The structural and chemical properties of the modified ACF were characterized by scanning electron microscopy, Fourier Transform Infrared Spectroscopy, and the Brunauer-Emmett-Teller nitrogen adsorption method. Effects of various parameters, such as modification time (0–75 min), solution pH (3–9), reaction time (0–24 h), and temperature (25–45°C) on SA adsorption onto ACF were investigated. The equilibrium data result showed that the adsorption behavior agrees well with both Langmuir and Freundlich models. The maximum adsorption capacity was 209 mg/g. The adsorption behavior of SA on the modified ACF fitted well with the pseudo-second-order kinetics model. Thermodynamic parameters showed that the adsorption reaction was a feasible, spontaneous and exothermic physical reaction.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Long, H., Miller, S.F., Strauss, C., Zhao, C., et al., Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, pp. E2498–E2505.

  2. 2

    Lal, S., Steinhart, A.H., et al., Can. J. Gastroenterol., 2016, vol. 20, pp. 651–655.

  3. 3

    El Amari, E.B., Chamot, E., Auckenthaler, R., Pechere, J.C., et al., Clin. Infect. Dis., 2017, vol. 33, pp. 1859–1864.

  4. 4

    Brugge, J.S., Yonemoto, W., Lustig, A., and Golden, A., Environ. Sci. Technol., 2011, vol. 45, pp. 5580–5586.

  5. 5

    Hao, R., Xiao, X., Zuo, X., Nan, J., et al., J. Hazard. Mater., 2012, vols. 209–210, pp. 137–145.

  6. 6

    Sim, W.J., Lee, J.W., Lee, E.S., Shin, S.K., et al., Chemosphere, 2011, vol. 82, pp. 179–186.

  7. 7

    Diaz-Cruz, M.S. and Barcelo, D., Trends Anal. Chem., 2007, vol. 26, pp. 637–646.

  8. 8

    Zhang, Z., Sun, K., Gao, B., Zhang, G., et al., J. Hazard. Mater., 2011, vol. 190, pp. 856–862.

  9. 9

    Wu, H., Xie, H., He, G., Guan, Y., et al., Appl. Clay Sci., 2016, vol. 119, pp. 161–169.

  10. 10

    Elmolla, E. and Chaudhuri, M., J. Hazard. Mater., 2009, vol. 170, pp. 666–672.

  11. 11

    Elmolla, E.S. and Chaudhuri, M., Desalination, 2012, vol. 285, pp. 14–21.

  12. 12

    Dirany, A., Sires, I., Oturan, N., Ozcan, A., et al., Environ. Sci. Technol., 2012, vol. 46, p. 4074.

  13. 13

    Jara, C.C., Fino, D., Specchia, V., Saracco, G., et al., Appl. Catal. B, 2007, vol. 70, pp. 479–487.

  14. 14

    Yahiat, S., Fourcade, F., Brosillon, S., and Amrane, A., Int. Biodeterior. Biodegrad., 2011, vol. 65, pp. 997–1003.

  15. 15

    Zhao, Y., Yin, B., Zhang, G., and Shi, W., Micro Nano Lett., 2018, vol. 13, pp. 9–11.

  16. 16

    Ocampo-Perez, R., Rivera-Utrilla, J., Gomez-Pacheco, C., Sanchez-Polo, M., et al., Chem. Eng. J., 2012, vol. 213, pp. 88–96.

  17. 17

    Gao, Y., Li, Y., Zhang, L., Huang, H., et al., J. Colloid Interface Sci., 2012, vol. 368, pp. 540–546.

  18. 18

    Otker, H.M. and Akmehmetbalcioglu, I., J. Hazard. Mater., 2005, vol. 122, pp. 251–258.

  19. 19

    Riverautrilla, J., Pradosjoya, G., Sanchezpolo, M., Ferrogarcia, M.A., et al., J. Hazard. Mater., 2009, vol. 170, pp. 298–305.

  20. 20

    Yang, S., Xiao, T., Zhang, J., Chen, Y., et al., Sep. Purif. Technol., 2015, vol. 143, pp. 19–26.

  21. 21

    Yang, O.B., Kim, J.C., Lee, J.S., and Kim, Y.G., Ind. Eng. Chem. Res., 2015, vol. 32, pp. 1692–1697.

  22. 22

    Shafeeyan, M.S., Houshmand, A., Arami-Niya, A., Razaghizadeh, H., et al., Bull. Korean Chem. Soc., 2015, vol. 36, pp. 533–538.

  23. 23

    Houshmand, A., Wan, D.W.M.A., and Saleh, S.M., Bull. Chem. Soc. Jpn., 2011, vol. 84, pp. 1251–1260.

  24. 24

    Yoda, T., Shibuya, K., Miura, K., and Myoubudani, H., Measurement, 2017, vol. 101, pp. 103–110.

  25. 25

    Zheng, W., Hu, J., Rappeport, S., Zheng, Z., et al., Microporous Mesoporous Mater., 2016, vol. 234, pp. 146–154.

  26. 26

    Radhika, R., Jayalatha, T., Rekha, K.G., et al., Process. Saf. Environ. Prot., 2018, vol. 117, pp. 350–362.

  27. 27

    Beltrame, K.K., Cazetta, A.L., De, P.S., Spessato, L., et al., Ecotoxicol. Environ. Saf., 2017, vol. 147, pp. 64–71.

  28. 28

    Baur, G.B., Yuranov, I., and Kiwi-Minsker, L., Catal. Today, 2015, vol. 249, pp. 252–258.

  29. 29

    Yue, Z. and Economy, J., in Activated Carbon Fiber and Textiles, 2017, vol. 2, pp. 61–139.

  30. 30

    He, P., Jia, L., Ma, G., et al., Ceram. Int., 2018, vol. 44, pp. 10726–10734.

  31. 31

    Yuan, J.M., Fan, Z.F., Yang, Q.C., Li, W., et al., Compos. Sci. Technol., 2018, vol. 164, pp. 222–228.

  32. 32

    Wang, X. and Sheng, Y., Environ. Sci. Manage., 2012, vol. 37, pp. 94–96.

  33. 33

    Wu, F.C., Tseng, R.L., and Juang, R.S., Chem. Eng. J., 2009, vol. 153, pp. 1–8.

  34. 34

    Wu, F.C., Ruling, T., and Rueyshin, J., Chem. Eng. J., 2009, vol. 150, pp. 366–373.

  35. 35

    Ogata, F. and Kawasaki, N., J. Environ. Chem. Eng., 2013, vol. 1, pp. 1013–1019.

  36. 36

    El-Khaiary, M.I., Malash, G.F., and Ho, Y.S., Desalination, 2010, vol. 257, pp. 93–101.

  37. 37

    Rasouli, M., Yaghobi, N., Hafezi, M., and Rasouli, M., J. Ind. Eng. Chem., 2012, vol. 18, pp. 1970–1976.

  38. 38

    Ishiyama, T., Matsumoto, S., Sakai, T., and Yachi, T. IEICE Tech. Rep., 1998, vol. 98, pp. 25–30.

  39. 39

    Selvakumar, R., Jothi, N.A., Jayavignesh, V., Karthikaiselvi, K., et al., Water Res., 2011, vol. 45, pp. 583–592.

  40. 40

    Brunauer, S. and Emmett, P.H., J. Am. Chem. Soc., 1940, vol. 62, pp. 1732–1746.

  41. 41

    Xiao, G., Yang, Y., and Wen, R., Environ. Chem., 2014, vol. 33, pp. 1167–1172.

  42. 42

    Liu, W.F., Jian, Z., Zhang, C.L., Wang, Y., et al., Chem. Eng. J., 2010, vol. 162, pp. 677–684.

  43. 43

    Anandkumar, J. and Mandal, B., J. Hazard. Mater., 2011, vol. 186, pp. 1088–1096.

Download references

Funding

The authors sincerely acknowledge the financial support from for State Oceanic Administration marine nonprofit industry research and special project (no. 20130500), the Liaoning science public welfare research fund projects (no. 20170002), the Liaoning Provincial Oceanic and Fishery Department research projects (no. 201733).

Author information

Correspondence to Xiaocai Yu.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hang Yang, Yu, X., Wang, L. et al. Adsorption of Sulfanilamide from Aquaculture Wastewater Using Modified Activated Carbon Fiber: Equilibrium, Kinetic and Thermodynamic. Specific and Informative: Surface Modification. Surf. Engin. Appl.Electrochem. 55, 684–691 (2019). https://doi.org/10.3103/S1068375519060127

Download citation

Keywords:

  • aquaculture wastewater
  • activated carbon fiber
  • adsorption
  • modification
  • sulfanilamide