Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

5-(3-Pryridyl)-4H-1,2,4-triazole-3-thiol as Potential Corrosion Inhibitor for AA6061 Aluminium Alloy in 0.1 M Hydrochloric Acid Solution

Abstract

Corrosion inhibition performance of 5-(3-Pryridyl)-4H-1,2,4-triazole-3-thiol on aluminium alloy AA6061 in 0.1 M HCl solution was tested by the weight loss method, potentiodynamic polarization and electrochemical impedance spectroscopy. The effect of an increase in temperature and a change in the concentration of the inhibitor were studied. The results indicated that with an increase in the concentration of the inhibitor and temperature the inhibition efficiency also increased. The inhibition efficiency as high as 94.1% was found at 60°C for 40 ppm of the inhibitor. By the perusal of thermodynamic and activation parameters, it is found that adsorption of the studied inhibitor takes place through chemisorption. The inhibitor agrees the Langmuir adsorption isotherm and acts as a mixed type inhibitor. Thermodynamic parameters also unveiled that the process of adsorption on the metal surface takes place through chemisorption. The formation of a protective film on the metal surface was confirmed by scanning electron microscopy. From the mechanism of corrosion inhibition, it is possible to deduce the formation of a coordination bond between the inhibitor and the metal surface. The inhibition nature of the molecule was explained by theoretical studies.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. 1

    Oguzie, E.E., Corros. Sci., 2007, vol. 49, pp. 1527–1539.

  2. 2

    Roberts, J.D. and Caserio, M.C., Basic Principles of Organic Chemistry, Menlo Park, CA: W.A Benjamin, 1964.

  3. 3

    Stansbury, E.E. and Buchanan, R.A., Fundamentals of Electrochemical Corrosion, Materials Park: ASM Int., 2000.

  4. 4

    Sukiman, N.L., Zhou, X., Birbilis, N., Hughes, A.E., et al., Durability and Corrosion of Aluminum and its Alloys: Overview, Property Space, Techniques and Developments, Rijeka: InTech Open, 2011. pp. 49–97.

  5. 5

    Ghali, E., Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing, Wiley Series in Corrosion, Revie, R.W., Ed., Hoboken, NJ: Wiley, 2010, pp. 3–48.

  6. 6

    Sanaulla Pathapalya Fakrudeen, Ananda Murthy, H.C., and Bheema Raju, V., J. Chil. Chem. Soc., 2012, vol. 57, pp. 1364–1371.

  7. 7

    Cleaning and Descaling Stainless Steel, A Designers’ Handbook Series no. 9001, Washington, DC: Am. Iron Steel Inst., 1982, pp. 2–36.

  8. 8

    Ezeoke, A.U., Obi-Egbedi, N.O., Adeosun, C.B. and Adeyemi, O.G., Int. J. Electrochem. Sci., 2012, vol. 7, no. 1, pp. 5339–5355.

  9. 9

    El-Etre, A.Y., Mater. Chem. Phys., 2008, vol. 108, nos. 2–3, pp. 278–282.

  10. 10

    Ahamad, I. and Quraishi, M.A., Corros. Sci., 2009, vol. 51, pp. 2006–2013.

  11. 11

    Zhang, Q.B. and Hua, Y.X., Electrochim. Acta, 2009, vol. 54, pp. 1881–1887.

  12. 12

    Quraishi, M.A., Sardar, N., and Ali, H., Corros. Sci., 2002, vol. 58, pp. 317–321.

  13. 13

    Prakashaiah, B.G. and Nityananda Shetty, A., Surf. Eng. Appl. Electrochem., 2018, vol. 54, no. 3, pp. 286–296.

  14. 14

    Harvey, T.G., Hardin, S.G., Hughes, A.E. and Muster, T.H., Corros. Sci., 2011, vol. 53, pp. 2184–2190.

  15. 15

    Fontana, M.G., Corrosion Engineering, New York: McGraw-Hill, 1986.

  16. 16

    Charitha, B.P. and Padmalatha Rao, India J.Mater. Environ. Sci., 2017, vol. 8, pp. 78–89.

  17. 17

    Ferreira, E.S., Giancomelli, C., Giacomelli, F.C., and Spinelli, A., Mater. Chem. Phys., 2004, vol. 83, pp. 129–134.

  18. 18

    Li, W.H., He, Q., Pei, C.L., and Hou, B.R., Electrochim. Acta, 2007, vol. 52, pp. 6386–6394.

  19. 19

    Li, W.H., He, Q., Pei, C.L. and Hou, B.R., J. Appl. Electrochem., 2008, vol. 38, pp. 289–295.

  20. 20

    Njoku, V.O., Oguzie, E.E., Obi, C., and Ayuk, A.A., Adv. Chem., 2014, vol. 10, pp. 1155–1125.

  21. 21

    Rosliza, R., Senin, H.B., and Wan Nik, W.B., Colloids Surf., A, 2008, vol. 312, pp. 185–189.

  22. 22

    Lebrini, M., Robert, F., Blandinieres, P.A. and Roos, C., Int. J. Electrochem. Sci., 2011, vol. 6, pp. 2443–2460.

  23. 23

    Prasanna, B.M. and Praveen, B.M., Anti-Corros. Methods Mater., 2016, vol. 63, pp. 47–55.

  24. 24

    Pinto, G.M., Nayak, J., and Nityananda Shetty, A., Mater. Chem. Phys., 2011, vol. 125, pp. 628–640.

  25. 25

    Migahed, M.A., Mater. Chem. Phys., 2005, vol. 93, pp. 48–53.

  26. 26

    Singh, A.K. and Quraishi, M., Corros. Sci., 2010, vol. 52, pp. 152–160.

  27. 27

    Impedance Spectroscopy, Theory, Experiment, and Applications, Barsoukov, E. and Ross Macdonald, J., Eds., New York: Wiley, 2005, 2nd ed.

  28. 28

    Machnikova, E., Kenton, W.H., et al., Electrochim. Acta, 2008, vol. 53, pp. 6024–6032.

  29. 29

    Zucchi, F., Grassi, V., Frignani, A., Monticelli, C., et al., J. Appl. Electrochem., 2005, vol. 36, pp. 195–204.

  30. 30

    Osman, M.M., El-Ghazawy, R.A., and Al-Sabagh, A.M., Mater. Chem. Phys., 2003, vol. 80, pp. 55–62.

  31. 31

    Ashassi-Sorkhabi, H., Shaabani, B., and Seifzadeh, D., Appl. Surf. Sci., 2005, vol. 239, pp. 154–164.

  32. 32

    Hamdy, A. and El-Gendy, N.S., Egypt. J. Petrol., 2013, vol. 22, pp. 17–25.

  33. 33

    Soltani, N., Behpour, M., Ghoreishi, S.M., and Naeimi, H., Corros. Sci., 2010, vol. 52, pp. 1351–1361.

  34. 34

    Paul, S. and Kar, B., Corrosion, 2012, art. ID 641386.

  35. 35

    Sanaulla Pathapalya Fakrudeen, Ananda Murthyh, and Bheema Raju, V., J. Chil. Chem. Soc., 2012, vol. 57, pp. 1364–1370.

  36. 36

    Martinez, S. and Stern, I., Appl. Surf. Sci., 2002, vol. 199, pp. 83–86.

  37. 37

    Rajenran, S., J. Electrochem. Soc., 2005, vol. 54, no. 2, pp. 61–71.

  38. 38

    Schweinsberg, D., George, G., Nanayakkara, A., and Steiner, D., Corros. Sci., 1988, vol. 28, pp. 33–42.

Download references

Author information

Correspondence to Ramesh S. Bhat.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raviprabha, K., Ramesh S. Bhat 5-(3-Pryridyl)-4H-1,2,4-triazole-3-thiol as Potential Corrosion Inhibitor for AA6061 Aluminium Alloy in 0.1 M Hydrochloric Acid Solution. Surf. Engin. Appl.Electrochem. 55, 723–733 (2019). https://doi.org/10.3103/S1068375519060103

Download citation

Keywords:

  • aluminium alloy AA6061
  • corrosion inhibitor
  • electrochemical impedance spectroscopy
  • scanning electron spectroscopy