Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nanoscale-TiO2/Diatomite Composite: Synthesis, Structure, and Thermal Stability

  • 7 Accesses

Abstract—

A composite material (DTD) consisting of titanium dioxide (TiO2) nanoparticles deposited into the diatomite matrix is synthesized by a modified method based on the heterogeneous hydrolysis of titanium tetrachloride as a TiO2 precursor. The initially prepared DTD samples are annealed at temperatures of 200 to 1000°C. The structure of resulting composite materials and TiO2 nanoparticles residing on the surface are investigated by X-ray powder diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), X-ray energy-dispersive spectroscopy (EDS), Fourier-transform IR spectroscopy, and low-temperature nitrogen adsorption. It is shown that the TiO2 deposited into the diatomite matrix exists in the anatase form and mainly lines the walls of macropores. The thermal stability of the prepared composites is studied, and it is found that, as the annealing temperature is raised, the size of TiO2 nanoparticles increases, while the specific surface area and sorption pore volume diminish due to densification of the mesoporous structure of diatomite. The mesoporous structure exists to temperatures as high as 800°C, meaning that the thermal stability is improved compared to initial diatomite. The diatomite matrix in its turn improves the thermal stability of TiO2 crystals and inhibits the anatase-to-rutile phase transition. The samples consisted of only anatase phase (i.e., no rutile is formed) up to 800°C. Annealed at 1000°C, the composites lose their porous structure and contain a mixture of crystalline anatase and rutile nanoparticles with a mean diameter of 5 to 10 nm.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    Goodeve, C.F. and Kitchener, J.A., Trans. Faraday Soc., 1938, vol. 34, pp. 902–908.

  2. 2

    Zhang, A., Zhang, R., Zhang, N., Hong, S.G., et al., Kinet. Catal., 2010, vol. 51, pp. 529–536.

  3. 3

    Besov, A.S., Krivova, N.A., Vorontsov, A.V., Zaeva, O.B., et al., J. Hazard. Mater., 2010, vol. 173, pp. 40–46.

  4. 4

    Chis, C., Evstratov, A., Malygin, A., Malkov, A., et al., Carpathian J. Earth Environ. Sci., 2007, vol. 2, no. 2, pp. 21–28.

  5. 5

    Song, H., Jiang, H., Liu, X., and Meng, G., Am. J. Environ. Sci., 2006, vol. 2, no. 2, pp. 60–65.

  6. 6

    De Witte, K., Meynen, V., Mertens, M., Lebedev, O.I., et al., Appl. Catal. B, 2008, vol. 84, pp. 125–132.

  7. 7

    Pucher, P., Benmami, M., Azouani, R., Krammer, G., et al., Appl. Catal. A, 2007, vol. 332, no. 2, pp. 297–303.

  8. 8

    Mora-Seró, I. and Bisquert, J., Nano Lett., 2003, vol. 3, no. 7, pp. 945–949.

  9. 9

    Wang, B., Zhang, G., Sun, Z., and Zheng, S., Powder Technol., 2014, vol. 262, pp. 1–8.

  10. 10

    Kibanova, D., Sleiman, M., Cervini-Silva, J., and Destaillats, H., J. Hazard. Mater., 2012, vols. 211–212, pp. 233–239.

  11. 11

    Destaillats, H., Kibanova, D., Trejo, M., Destaillats, H., et al., Appl. Clay Sci., 2009, vol. 42, pp. 563–568.

  12. 12

    Sun, Z., Bai, C., Zheng, S., Yang, X., et al., Appl. Catal. A, 2013, vol. 458, pp. 103–110.

  13. 13

    Rossetto, E., Petkowicz, D., dos Santos, J.H.Z., Pergher, S.B.C., et al., Appl. Clay Sci., 2010, vol. 48, pp. 602–606.

  14. 14

    Venckatesh, K. and Rajeshwari Sivaraj, Int. J. Eng. Sci. Technol., 2010, vol. 2, no. 8, pp. 3695–3700.

  15. 15

    Zhang, G.K., Ding, X.M., He, F.S., Yu, X.Y., et al., Langmuir, 2008, vol. 24, no. 3, pp. 1026–1030.

  16. 16

    Korunic, Z., J. Stored Prod. Res., 1998, vol. 34, pp. 87–97.

  17. 17

    Ilia, I.K., Stamatakis, M.G., and Perraki, Th.S., Cent. Eur. J. Geosci., 2009, vol. 1, no. 4, pp. 393–403.

  18. 18

    Mohamedbakr, H. and Burkitbaev, M., Open Miner. J., 2009, vol. 3, pp. 12–16.

  19. 19

    Bakr, H.E.G.M.M., AsianJ. Mater. Sci., 2010, vol. 2, no. 3, pp. 121–136.

  20. 20

    Goren, R., Baykara, T., and Marsoglu, M., Br. Ceram. Trans., 2002, vol. 101, pp. 177–180.

  21. 21

    Musleh, S.M., Ultra Sci. Phys. Sci. B, 2012, vol. 24, no. 3, pp. 411–422.

  22. 22

    Ma, S.-C., Wang, Z.-G., Zhang, J.-L., et al., Appl. Surf. Sci., 2015, vol. 327, pp. 453–461.

  23. 23

    Gao, X. and Wachs, I.E., Catal. Today, 1999, vol. 51, pp. 233–254.

  24. 24

    Yuan, P., Yang, D., Lin, Z., et al., J. Non-Cryst. Solids., 2006, vol. 352, pp. 3762–3771.

  25. 25

    Yu, L., Kang, Y. and Zhao, W., Nanotechnol. Precis. Eng., 2008, vol. 6, no. 4, pp. 254–260.

  26. 26

    Wang, B., Condi de Godoi, F., Sun, Z., Zeng, Q., et al., J. Colloid Interface Sci., 2015, vol. 438, pp. 204–211.

  27. 27

    Su, Y.Y., Yang, P.S., and Zhu, X.B., Adv. Mater. Res., 2009, vols. 79–82, pp. 357–360.

  28. 28

    Jia, Y., Hana, W., Xiong, G., and Yang, W., J. Colloid Interface Sci., 2008, vol. 323, pp. 326–331.

  29. 29

    Toster, J., Harnagea, C., Iyer, K.S., Rosei, F., et al., Cryst. Eng. Commun., 2012, vol. 14, no. 10, pp. 3446–3450.

  30. 30

    Zhang, Y., Lia, J., Niua, F., Sunc, J., et al., J. Chromatogr. B., 2014, vol. 960, pp. 52–58.

  31. 31

    Hsien, K.-J., Tsai, W.-T., and Su, T.-Y., J. Sol-Gel Sci. Technol., 2009, vol. 51, pp. 63–69.

  32. 32

    Liu, Y., Zheng, S., Du, G., Shu, F. and Chen, J., Int. J. Modern Phys. B., 2009, vol. 23, nos. 6–7, pp. 1683–1688.

  33. 33

    Gao, X., Bare, S.R., Fierro, J.L.G., Banares, M.A., et al., J. Phys. Chem. B, 1998, vol. 102, pp. 5653–5666.

  34. 34

    Ninness, B.J., Bousfield, D.W., and Tripp, C.P., Colloids Surf., A, 2003, vol. 214, pp. 195–204.

  35. 35

    Viswanath, R.N. and Ramasamy, S., Colloids Surf., A, 1998, vol. 113, pp. 49–56.

  36. 36

    Gao, X. and Wachs, I.E., Catal. Today, 1999, vol. 51, pp. 233–254.

  37. 37

    Zelenak, V., Hornebecq, V., Mornet, S., Schaf, O., et al., Chem. Mater., 2006, vol. 18, pp. 3184–3191.

  38. 38

    Lee, J.H. and Yang, Y.S., Mater. Chem. Phys., 2005, vol. 93, no. 1, pp. 237–242.

  39. 39

    Uekawa, N., Kajiwara, J., Kakegawa, K., and Sasaki, Y., J. Colloid Interface Sci., 2002, vol. 250, no. 2, pp. 285–290.

  40. 40

    Zhang, Q., Gao, L., and Guo, J., Nanostruct. Mater., 1999, vol. 11, no. 8, pp. 1293–1300.

  41. 41

    Ismagilov, Z.R., Tsikoza, L.T., Shikina, N.V., Zarytova, V.F., et al., Russ. Chem. Rev., 2009, vol. 78, no. 9, pp. 873–885.

  42. 42

    Venkatachalam, N., Palanichamy, M., and Murugesan, V., Mater. Chem. Phys., 2007, vol. 104, nos. 2–3, pp. 454–459.

  43. 43

    ASTM Card no. 21-1276.

  44. 44

    ASTM Card no. 88-1175.

  45. 45

    Mazalov, L.N., Sorosovskii Obraz. Zh., 2000, vol. 6, no. 4, pp. 37–44.

  46. 46

    Kim, C.S., Shin, J.W., An, S.H., Jang, H.D., et al., Chem. Eng. J., 2012, vols. 204–206, pp. 40–47.

  47. 47

    Surface Analysis: The Principal Techniques, Vickerman, J.C. and Gilmore, I.S., Eds., New York: Wiley, 2009, 2nd ed.

  48. 48

    Goldstein, J.I., Newbury, D.E., Echlin, P., et al., Scanning Electron Microscopy and X-Ray Microanalysis, New York: Plenum, 2003, 3rd ed.

  49. 49

    Sun, Z., Bai, C., Zheng, S., Yang, X., et al., Appl. Catal., A, 2013, vol. 458, pp. 103–110.

  50. 50

    Lin, Y., Wang, T., and Jin, Y., Powder Technol., 2002, vol. 123, pp. 194–198.

  51. 51

    Xia, Y., Li, F., Jiang, Y., et al., Appl. Surf. Sci., 2014, vol. 303, pp. 290–296.

  52. 52

    Boccuti, M.R., Rao, K.M., Zecchina, A., Leofanti, G., et al., Stud. Surf. Sci. Catal., 1989, vol. 48, pp. 133–144.

  53. 53

    Dutoit, D.C.M., Schneider, M., and Baiker, A., J. Catal., 1995, vol. 153, pp. 165–176.

  54. 54

    Wetchakun, N. and Phanichphant, S., Curr. Appl. Phys., 2008, vol. 8, nos. 3–4, pp. 343–346.

  55. 55

    Sun, Z., Hu, Z., Yan, Y., and Zheng, S., Appl. Surf. Sci., 2014, vol. 314, pp. 251–259.

Download references

ACKNOWLEDGMENTS

We are deeply grateful to A. S. Smolyanskii (Karpov Scientific Research Institute of Physical and Chemistry, Moscow, Russia) for XPS and EDS measurements.

Funding

The work was supported within institutional project no. 15.817.02.07.А.

Author information

Correspondence to T. Ya. Datsko.

Additional information

Translated by A. Kukharuk

About this article

Verify currency and authenticity via CrossMark

Cite this article

Datsko, T.Y., Zelentsov, V.I. Nanoscale-TiO2/Diatomite Composite: Synthesis, Structure, and Thermal Stability. Surf. Engin. Appl.Electrochem. 55, 655–666 (2019). https://doi.org/10.3103/S1068375519060036

Download citation

Keywords:

  • diatomite
  • nanoscale TiO2
  • synthesis
  • anatase
  • porous structure
  • crystal structure
  • thermal stability