Electrochemical Investigation of Tetranitro Cobalt Phthalocyanine on Corrosion Control of Mild Steel in Hydrochloric Acid Medium

  • M. S. Sarvajith
  • Pushpanjali
  • FasiullaEmail author


Tetranitro cobalt phthalocyanine (TNCoPc) was used as a corrosion inhibition of mild steel in a 0.25 M hydrochloric acid medium using Tafel polarization and electrochemical impedance spectroscopy in a temperature range of 303 to 323 K. The concentration of inhibitor used was in the range of 1.25–5 mM. The surface morphology was studied using scanning electron microscopy, atomic force microscopy, and energy dispersive X-ray analysis. Inhibition efficiency was found to increase with increasing inhibitor concentration and decreasing temperature. Polarization studies revealed that TNCoPc acts as a mixed type inhibitor at all concentrations of it. The maximum inhibition efficiency of 86.48% was obtained with TNCoPc at its optimum concentration of 5 mM. Adsorption studies revealed that the adsorption of this inhibitor underwent both physisorption and chemisorption on the surface of the metal and followed the Langmuir adsorption isotherm. The kinetic and thermodynamic parameters were calculated and discussed in detail. The results obtained by both Tafel polarization and electrochemical impedance spectroscopy methods were in good agreement with each other. TNCoPc emerged as a potential inhibitor for the corrosion control of mild steel in a hydrochloric acid medium.


mild steel green inhibitor tetranitro cobalt phthalocyanine Tafel polarization electrochemical impedance spectroscopy scanning electron microscopy 


  1. 1.
    Schweitzer, P.A., Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals, Boca Raton: CRC Press, 2006, 2nd ed.CrossRefGoogle Scholar
  2. 2.
    Ahmed, I., Prasad, R., and Quarishi, M.A., Corros. Sci., 2010, vol. 52, pp. 933–942.CrossRefGoogle Scholar
  3. 3.
    Bentiss, F., Lebrini, M., and Lagrenée, M., Corros. Sci., 2005, vol. 47, pp. 2915–2931.CrossRefGoogle Scholar
  4. 4.
    Durnie, W., DeMarco, R., Kinsella, B., and Jefferson, A., J. Electrochem., 2001, vol. 31, pp. 1221–1226.CrossRefGoogle Scholar
  5. 5.
    Geler, E. and Azambuja, D.S., Corros. Sci., 2000, vol. 42, pp. 631–643.CrossRefGoogle Scholar
  6. 6.
    Hackerman, N., Snavely, E.S., and Payne, J.S., Jr., J. Electrochem. Soc., 1966, vol. 113, pp. 677–686.CrossRefGoogle Scholar
  7. 7.
    Mercier, D. and Barthes-Labrousse, M.G., Corros. Sci., 2009, vol. 51, pp. 339–348.CrossRefGoogle Scholar
  8. 8.
    Charitha, B.P. and Rao, P., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 6, pp. 551–559.CrossRefGoogle Scholar
  9. 9.
    Prakash Shettya, B., Suresha Kumara, T.H., Mamatha, D.M., Vaishaka Rao, R., and Chitharanjan Hegde, A., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 1, pp. 42–51.CrossRefGoogle Scholar
  10. 10.
    Pushpanjali, Rao, S.A., and Rao, P., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 5, pp. 475–485.CrossRefGoogle Scholar
  11. 11.
    Bajat, J.B., Mišković-Stanković, V.B., and Kačarević-Popović, Z., Corros. Sci., 2008, vol. 50, pp. 2078–2084.CrossRefGoogle Scholar
  12. 12.
    Sanyal, B., Prog. Org. Coat., 1981, vol. 9, pp. 165–236.CrossRefGoogle Scholar
  13. 13.
    Shetty, P., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 6, pp. 587–591.CrossRefGoogle Scholar
  14. 14.
    Pérez, M.D., del Rey, B., Vázquez, P., and Torres, T., J. Chem., 1998, vol. 22, pp. 23–31.Google Scholar
  15. 15.
    Al-Sohaimi, B.R., Piskin, M., Aljuhani, A., Al-Raqa, S.Y., et al., J. Lumin., 2016, vol. 173, pp. 82–88.CrossRefGoogle Scholar
  16. 16.
    Phthalocyanines Properties and Applications, Leznoff, C.C. and Lever, A.B.P., Eds., Weinheim: Wiley, 1996.Google Scholar
  17. 17.
    Sakamoto, K. and Ohno-Okumura, E., Materials (Basel), 2009, vol. 2, no. 3, pp. 1127–1179.CrossRefGoogle Scholar
  18. 18.
    Walter, M.G., Rudine, A.B., and Wamser, C.C., J. Porphyrins Phthalocyanines, 2010, vol. 14, no. 9, pp. 759–792.CrossRefGoogle Scholar
  19. 19.
    Rella, R., Serra, A., Siciliano, P., Tepore, A., et al., Langmuir, 1997, vol. 13, no. 24, pp. 6562–6567.CrossRefGoogle Scholar
  20. 20.
    de la Escosura, A., Martínez-Díaz, M.V., Barberá, J. and Torres, T., J. Org. Chem., 2008, vol. 73, no. 4, pp. 1475–1480.CrossRefGoogle Scholar
  21. 21.
    Gregory, P., J. Porphyrins Phthalocyanines, 2000, vol. 4, pp. 432–437.CrossRefGoogle Scholar
  22. 22.
    Halbert, M.K. and Baldwin, R.P., Anal. Chem., 1985, vol. 57, pp. 591–595.CrossRefGoogle Scholar
  23. 23.
    Fox, J.M., Katz, T.J., van Elshocht, S., Verbiest, T., et al., J. Am. Chem. Soc., 1999, vol. 121, no. 14, pp. 3453–3459.CrossRefGoogle Scholar
  24. 24.
    Lukyanets, E.A., J. Porphyrins Phthalocyanines, 1999, vol. 3, no. 6, pp. 424–432.CrossRefGoogle Scholar
  25. 25.
    Amaral, G.P., Puntel, G.O., Dalla Corte, C.L., Dobrachinski, F., et al., Toxicol. In vitro, 2012, vol. 26, no. 1, pp. 125–132.CrossRefGoogle Scholar
  26. 26.
    Dibetsoe, M., Olasunkanmi, L.O., Fayemi, O.E., Yesudass, S., et al., Molecules, 2015, vol. 20, no. 9, pp. 15701–15734.CrossRefGoogle Scholar
  27. 27.
    Aoki, I.V., Guedes, I.C., and Maranhão, S.L.A., J. Appl. Electrochem., 2002, vol. 32, no. 8, pp. 915–919.CrossRefGoogle Scholar
  28. 28.
    Zhao, P., Liang, Q., and Li, Y., Appl. Surf. Sci., 2005, vol. 252, no. 5, pp. 1596–1607.CrossRefGoogle Scholar
  29. 29.
    Özdemir, O.K., Aytaç, A., Atilla, D., and Durmuş, M., J. Mater. Sci., 2011, vol. 46, no. 3, pp. 752–758.CrossRefGoogle Scholar
  30. 30.
    Achar, B.N., Fohlen, G.M., Parker, J.A. and Keshavayya, J., Polyhedron, 1987, vol. 6, no. 60, pp. 1463–1467.CrossRefGoogle Scholar
  31. 31.
    Popova, A., Christov, M., and Vasilev, A., Corros. Sci., 2011, vol. 53, pp. 1771–1777.Google Scholar
  32. 32.
    Renata, B.O., Elanine, M.S.F., Rodrigo, P.P.S., Anderson, A.A., et al., Eur. J. Med. Chem., 1984, vol. 43, pp. 1984–1988.Google Scholar
  33. 33.
    Corrosion Mechanisms, Mansfeld, F.B., Ed., Boca Raton: CRC Press, 1987, pp. 165–209.Google Scholar
  34. 34.
    Li, W.H., He, Q., Pei, C.L., and Hou, B.R., J. Appl. Electrochem., 2008, vol. 3, pp. 289–295.CrossRefGoogle Scholar
  35. 35.
    Özcan, W.M., Solmaz, R., Kardas, G., and Dehari, I., Colloids Surf., A, 2008, vol. 325, pp. 57–63.CrossRefGoogle Scholar
  36. 36.
    Mansfeld, F., Lin, S., Kim, K. and Shih, H., J. Mater. Corros., 1988, vol. 39, p. 487.Google Scholar
  37. 37.
    Zhang, L., Li, H., Fu, Q., Xu, Z., Li, K., and Wei, J., Nano, 2015, vol. 10, no. 3, pp. 1–10.Google Scholar
  38. 38.
    Bayo, K., Mossoyan, J.C., and Ouedraogo, G.V., Spectrochim. Acta, Part A, 2004, vol. 60, no. 3, pp. 653–657.CrossRefGoogle Scholar
  39. 39.
    Mansfeld, F., Corrosion, 1973, vol. 29, p. 397.CrossRefGoogle Scholar
  40. 40.
    El-Awady, A.A., Abd-El-Nabey, B.A., and Aziz, S.G., J. Chem. Soc., 1993, vol. 89, pp. 795–802.Google Scholar
  41. 41.
    Brett, C.M.A., Corros. Sci., 1992, vol. 33, pp. 203–210.CrossRefGoogle Scholar
  42. 42.
    Bessone, J.B., Salinas, D.R., Mayer, C., Ebert, M., et al., J. Electrochim. Acta, 1992, vol. 37, p. 2283.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Manipal Institute of Technology, MAHEManipalIndia

Personalised recommendations