Effect of Parameters of Electric Spark Discharge on the Physico-Chemical Characteristics of Steel 45 Surface after the ESA Electrodes Based on WC–8%Co with Chromium–Carbide Additives

  • S. V. NikolenkoEmail author
  • A. A. Burkov
  • M. I. Dvornik
  • A. V. Zaitsev
  • N. A. Sui


The work studies the effects of the parameters of electric spark discharge and tungsten carbide-based electrode materials on electric spark alloying using chromium carbide nanopowder additives on the physico-chemical and operational characteristics of the coating surface. It is found that an increase in the surface roughness occurs with an increase in the duration of the electric spark discharge from 20 to 80 μs with a standard WC–8%Co hard alloy. The addition of 1–5% nanopowder of the grain growth inhibitor improves the physicochemical properties of coatings, reduces surface roughness, and increases wear resistance.


electrospark alloying electrode materials coatings tungsten carbide chromium carbide nanopowder grain growth inhibitor roughness micro-abrasive wear impedance spectroscopy 



The authors thank E. P. Zaikova (Institute of Material Science of Khabarovsk National Center of the Far Eastern Branch of Russian Academy of Sciences) for the assistance in performing investigations of the granulometric composition of the erosion products.


  1. 1.
    Verkhoturov, A.D., Fiziko-khimicheskie osnovy protsessa elektroiskrovogo legirovaniya metallicheskikh poverkhnostei (Physicochemical Principles of Electric Spark Doping of Metal Surfaces), Vladivostok: Dal’nauka, 1992.Google Scholar
  2. 2.
    Zamulaeva, E.I., Levashov, E.A., Kudryashov, A.E., et al., Surf. Coat. Technol., 2008, vol. 202, pp. 3715–3722.CrossRefGoogle Scholar
  3. 3.
    Nikolenko, S.V. and Verkhoturov, A.D., Novye elektrodnye materially dlya elektroiskrovogo legirovaniya (New Electrode Materials for Electrospark Doping), Vladivostok: Dal’nauka, 2005.Google Scholar
  4. 4.
    Khimukhin, S.N., Rea, Hosen, Verkhoturov, A.D., and Rea, E.H., Formirovanie struktury sloya na metallakh i splavakh pri elektroiskrovoi obrabotke (Layer’s Structure Formation on Metals and Alloys under Electro-Spark Processing), Khabarovsk: Dal’nevost. Gos. Univ. Putei Soobshch., 2010.Google Scholar
  5. 5.
    Dvornik, M.I. and Zaitsev, A.V., Russ. J. Non-Ferrous Met., 2018, vol. 59, no. 5, pp. 563–569.CrossRefGoogle Scholar
  6. 6.
    Siwak, P. and Garbiec, D., Trans. Nonferrous Met. Soc. China, 2016, vol. 26, no. 10, pp. 2641–2646.CrossRefGoogle Scholar
  7. 7.
    Panov, V.S. and Chuvilin, A.M., Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii iz nikh (Technology and Properties of Sintered Solid Alloys and Products from Them), Moscow: Mosk. Inst. Stali Splavov, 2001.Google Scholar
  8. 8.
    Tret’yakov, V.I., Osnovy metallovedeniya i tekhnologii proizvodstva spechennykh tverdykh splavov (Fundamentals of Metal Science and Production Technology of Sintered Solid Alloys), Moscow: Metallurgiya, 1976.Google Scholar
  9. 9.
    Hayashi, K., Fuke, Y., and Suzuki, H., J. Jpn. Soc. Powder, Powder Metall., 1972, vol. 19, pp. 67–71.Google Scholar
  10. 10.
    Christensen, M. and Wahnstrom, G., Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 80–88.CrossRefGoogle Scholar
  11. 11.
    Yamamoto, T., Ikuhara, Y., Watanabe, T., Sakuma, T., et al., J. Mater. Sci., 2001, vol. 36, pp. 3885–3890.CrossRefGoogle Scholar
  12. 12.
    Kim, B.K., Ha, G.H., Lee, D.W., and Lee, G.G., Adv. Perform. Mater., 1998, vol. 5, pp. 341–352.CrossRefGoogle Scholar
  13. 13.
    Chabretou, V., Allibert, C.H., and Missiaen, J.M., J. Mater. Sci., 2003, vol. 38, pp. 2581–2590.CrossRefGoogle Scholar
  14. 14.
    Sergeev, A.G., Latyshev, M.V., and Teregerya, V.V., Metrologiya, standartizatsiya, sertifikatsiya (Metrology, Standardization, and Certification), Moscow Logos, 2003.Google Scholar
  15. 15.
    Kusano, Y., van Acker, K., and Hutchings, I.M., Surf. Coat. Technol., 2004, vol. 183, nos. 2–3, pp. 312–327.CrossRefGoogle Scholar
  16. 16.
    Namitokov, K.K., Ukr. Fiz. Zh., 1962, no. 10, pp. 1136–1139.Google Scholar
  17. 17.
    Li, Q.H., Yue, T.M., Guo, Z.N., and Lin, X., Metall. Mater. Trans. A, 2013, vol. 44, pp. 1767–1778.CrossRefGoogle Scholar
  18. 18.
    Burkov, A.A. and Pyachin, S.A., Solid State Phenom., 2014, vol. 213, pp. 131–136.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • S. V. Nikolenko
    • 1
    Email author
  • A. A. Burkov
    • 1
  • M. I. Dvornik
    • 1
  • A. V. Zaitsev
    • 1
  • N. A. Sui
    • 1
  1. 1.National Institute of Material Science of Khabarovsk Far Eastern Branch of Russian Academy of SciencesKhabarovskRussia

Personalised recommendations