Facile Synthesis of Polyaniline/Bismuth Nickelate Nanorod Composites for Sensitive Tartaric Acid Detection

  • Y. Ma
  • F. L. Qiu
  • T. Wei
  • F. F. Lin
  • L. Yan
  • H. Wu
  • Y. Zhang
  • L. Z. PeiEmail author
  • C. G. FanEmail author


Polyaniline/bismuth nickelate nanorod composites with different polyaniline mass percentage have been obtained by a simple in-situ polymerizing process. The structure and morpho-logy of the composites are analyzed by X-ray diffraction and transmission electron microscopy. The composites have cubic Bi12NiO19 phase. Amorphous sphere-shaped polyaniline with nanoscale size attaches firmly to the surface of the crystalline bismuth nickelate nanorods. A glassy carbon electrode is modified with polyaniline/bismuth nickelate nanorod composites for the electrochemical detection of tartaric acid. Electrochemical responses of tartaric acid have been investigated by controlling such parameters as the scan rate and tartaric acid concentration. The peak current is linearly raised with increasing the scan rate and tartaric acid concentration. The linear range increases from 0.001–2 mM to 0.0005–2 mM and the limit of detection decreases from 0.37 to 0.18 μM as increasing the polyaniline mass percentage from 10 to 40 wt %. Compared with a bare glassy carbon electrode and a bismuth nickelate nanorods modified polyaniline one greatly enhances the electrochemical detection performance of tartaric acid.


polyaniline/bismuth nickelate nanorods composites glassy carbon electrode electrochemical detection tartaric acid 


  1. 1.
    Asghari, E., Gholizadeh-Khajeh, M., and Ashassi-Sorkhabi, H., J. Mater. Eng. Perform., 2016, vol. 25, pp. 4230–4238.CrossRefGoogle Scholar
  2. 2.
    Majidzade, V.A., Guliyev, P.H., Aliyev, A.S., Elrouby, M., et al., J. Mol. Struct., 2017, vol. 1136, pp. 7–13.CrossRefGoogle Scholar
  3. 3.
    Zaheer, Z. and Aazam, E.S., J. Mol. Liquids, 2017, vol. 229, pp. 436–442.CrossRefGoogle Scholar
  4. 4.
    Arof, A.K., Kufian, M.Z., Aziz, N., Nor, N.A.M., et al., Ionics, 2017, vol. 23, pp. 1663–1674.CrossRefGoogle Scholar
  5. 5.
    Yan, M.Q., Zhou, M.C., Chen, J., Zhao, T.L., et al., Mater. Sci. Eng., C, 2017, vol. 79, pp. 76–83.CrossRefGoogle Scholar
  6. 6.
    Yang, W.C., Dai, Y.Q., Yu, A.M., and Chen, H.Y., J. Chromatogr. A, 2000, vol. 867, pp. 261–269.CrossRefGoogle Scholar
  7. 7.
    Fu, C.G., Song, L.N., and Fang, Y.Z., Anal. Chim. Acta, 1998, vol. 371, pp. 81–87.CrossRefGoogle Scholar
  8. 8.
    Gailwad, A., Silva, M., and Pérez-Bendito, D., Analyst, 1994, vol. 119, pp. 1819–1824.CrossRefGoogle Scholar
  9. 9.
    Wang, N., Chang, P.R., Zheng, P.W., and Ma, X.F., Diamond Relat. Mater., 2005, vol. 55, pp. 117–122.CrossRefGoogle Scholar
  10. 10.
    Pei, L.Z., Pei, Y.Q., Xie, Y.K., Fan, C.G., et al., J. Mater. Res., 2012, vol. 27, pp. 2391–2400.CrossRefGoogle Scholar
  11. 11.
    Pei, L.Z., Lin, F.F., Qiu, F.L., Wang, W.L., et al., Mater. Res. Express., 2017, vol. 4, p. 075047.CrossRefGoogle Scholar
  12. 12.
    Bak, J., Bae, H.B., Kim, J., Oh, J.H., et al., Nano Lett., 2017, vol. 17, pp. 3126–3132.CrossRefGoogle Scholar
  13. 13.
    Nacy, A., Ma, X.F., and Nikolla, E., Top. Catal., 2015, vol. 58, pp. 513–521.CrossRefGoogle Scholar
  14. 14.
    Hu, X.P., Pan, D.W., Han, H.T., Lin, M.Y., et al., Mater. Lett., 2017, vol. 190, pp. 83–85.CrossRefGoogle Scholar
  15. 15.
    Cao, Y., Lin, B.P., Sun, Y., Yang, H., and Zhang, X.Q., Electrochim. Acta, 2015, vol. 174, pp. 41–50.CrossRefGoogle Scholar
  16. 16.
    Pei, L.Z., Wei, T., Lin, N., and Zhang, H., J. Alloys Compd., 2016, vol. 663, pp. 677–685.CrossRefGoogle Scholar
  17. 17.
    Li, C., Zhang, L.B., Ding, L.L., Ren, H.Q., et al., Biosens. Bioelectron., 2011, vol. 26, pp. 4169–4176.CrossRefGoogle Scholar
  18. 18.
    Yang, S.K., Wang, Y.H., Zhou, Y., Li, H.H., et al., Pol. J. Environ. Stud., 2017, vol. 26, pp. 1233–1243.CrossRefGoogle Scholar
  19. 19.
    Pei, L.Z., Cai, Z.Y., Xie Y.K., Pei, Y.Q., et al., J. Electrochem. Soc., 2012, vol. 159, pp. G107–G11.CrossRefGoogle Scholar
  20. 20.
    Sivakumar, M., Sakthivel, M., Chen, S.M., Pandi, K., et al., Int. J. Electochem. Sci., 2017, vol. 12, pp. 4835–4846.CrossRefGoogle Scholar
  21. 21.
    Wang, Z.B., Ge, M., Xiong, S.C., and Zhu, X.Q., Ionics, 2017, vol. 23, pp. 1197–1202.CrossRefGoogle Scholar
  22. 22.
    Liu, J. and Wan, M.X., J. Polym. Sci. A, 2000, vol. 38, pp. 2734–2739.CrossRefGoogle Scholar
  23. 23.
    Deng, J.G., Ding, X.B., Zhang, W.C., Peng, Y.X., et al., Eur. Polym. J., 2002, vol. 38, pp. 2497–2501.CrossRefGoogle Scholar
  24. 24.
    Wang, X.M., Zhou, D.K., and Wang, Y.C., Int. J. Electrochem. Sci., 2017, vol. 12, pp. 5411–5420.CrossRefGoogle Scholar
  25. 25.
    Mallakpour, S., Abdolmaleki, A., Mahmoudian, M., Ensafi, A.A., et al., J. Mater. Sci., 2017, vol. 52, pp. 9683–9695.CrossRefGoogle Scholar
  26. 26.
    Hager, G. and Brolo, A.G., J. Electroanal. Chem., 2009, vol. 625, pp. 109–116.CrossRefGoogle Scholar
  27. 27.
    Xia, C. and Wang, N., Analyst, 2011, vol. 136, pp. 288–292.CrossRefGoogle Scholar
  28. 28.
    Davis, J., Moorcroft, M., Wilkins, S.J., Compton, R.G., et al., Analyst, 2000, vol. 125, pp. 737–742.CrossRefGoogle Scholar
  29. 29.
    Cai, Z.Y., Pei, L.Z., Yang, Y., Pei, Y.Q., et al., Meas. Sci. Technol., 2012, vol. 23, p. 115701.CrossRefGoogle Scholar
  30. 30.
    Cai, Z.Y., Pei, L.Z., Yang, Y., Pei, Y.Q., et al., J. Solid State Electrochem., 2012, vol. 16, pp. 2243–2249.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Ministry of Education, School of Materials Science and Engineering, Anhui University of TechnologyMa’anshanP. R. China
  2. 2.The Key Laboratory for Power Metallurgy Technology and Advanced Materials of Xiamen, Xiamen University of TechnologyXiamenP. R. China

Personalised recommendations