Advertisement

Characterization of Hydroxyapatite Coating on 316L Stainless Steel by Sol–Gel Technique

  • Sarbjit KaurEmail author
  • Niraj BalaEmail author
  • Charu KhoslaEmail author
Article
  • 6 Downloads

Abstract

Biomaterials are used for developing implants and producing a part or facilitating a function of a human body in a safe, reliable, and economical manner. Sol–gel deposition is one of the best, simple and economical methods of surface modification. In the current work, hydroxyapatite Ca10(PO4)6(OH)2, a bioactive material, has been prepared and then deposited on 316L stainless steel by the sol-gel coating method. The porosity percentage of hydroxyapatite coating was found to be 0.22. Electrochemical corrosion testing was carried out for both uncoated and sol-gel coated specimens. The coated specimens were characterized by the X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and cross-sectional analysis. The results revealed that the Ca/P ratio of the sol-gel coated steel was closer to that of a real human bone. It was found that hydroxyapatite-coated samples show better corrosion resistance and better implant properties as compared to those of the uncoated 316L stainless steel.

Keywords:

biomaterials bioactive electrochemical hydroxyapatite sol-gel 

Notes

ACKNOWLEDGMENTS

Authors express their earnest thanks to Dr. Harpreet Singh, Professor at the School of Mechanical, Materials and Energy Engineering, Indian Institute of Technology, Roopnagar (Punjab) and Metallizing equipment Industry, Jodhpur for their kind co-operation during this research work. Authors would also like to thank IKGPTU Kapurthala for providing access to papers and journals required for this research.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Manivasagam, G., Dhinasekaran, D., and Rajamanickam, A., Corros. Sci., 2010, vol. 2, pp. 40–54.Google Scholar
  2. 2.
    Geesink, R.G., Groot, K., and Klein, C.P., Clin. Orthop. Relat. Res., 1987, vol. 225, pp. 147–170.Google Scholar
  3. 3.
    Singh, R. and Dahotre, N.B., J. Mater. Sci. Mater. Med., 2007, vol. 18, no. 5, pp. 725–751.CrossRefGoogle Scholar
  4. 4.
    Chen, J.-Z., Shi, Y.-L., Wang, L., Yan, F.-Y., and Zhang, F.-Q., Mater. Lett., 2006, vol. 60, no. 20, pp. 2538–2543.CrossRefGoogle Scholar
  5. 5.
    Lee, J.-H., Kim, H.-E., and Koh, Y.-H., Mater. Lett., 2009, vol. 63, pp. 1995–1998.CrossRefGoogle Scholar
  6. 6.
    Lauenburg, S.C.G., Wolke, J.G.C., Siebers, M.C., Schoonam, J., et al., Biomaterials, 2006, vol. 27, pp. 3368–3378.CrossRefGoogle Scholar
  7. 7.
    Milell, E., Cosentino, F., Licciuli, A., and Massaro, C., Biomaterials, 2001, vol. 22, pp. 1425–1431.CrossRefGoogle Scholar
  8. 8.
    Sridhar, T.M., Mudali, U.K. and Subbaiyan, M., Corros. Sci., 2003, vol. 45, pp. 237–252.CrossRefGoogle Scholar
  9. 9.
    Wang, C.X., Chen, Z.Q., Guan, L.M., Wang, M., et al., Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, vol. 179, pp. 364–372.Google Scholar
  10. 10.
    Nelea, V., Morosanu, C., Lliescue, M., and Mihailescu, I.N., Surf. Coat. Technol., 2003, vol. 173, pp. 315–322.CrossRefGoogle Scholar
  11. 11.
    Khandewala, H., Singh, G., Aggarwal, K., Parkash, S., et al., Appl. Surf. Sci., 2013, vol. 265, pp. 30–35.CrossRefGoogle Scholar
  12. 12.
    Bala, N., Singh, H., Karthikeyan, J., and Parkash, S., Surf. Eng., 2014, vol. 30, no. 6, pp. 414–421.CrossRefGoogle Scholar
  13. 13.
    Singh, G., Singh, H., and Sidhu, B.S., in Proc. Int. Thermal Spray Conf., May 10–12, Shanghai, China, Materials Park, OH: ASM Int., 2016, pp. 812–819.Google Scholar
  14. 14.
    Sergo, V., Sbaizero, O., and Clarke, D.R., Biomaterials, 1997, vol. 18, no. 6, pp. 477–482.CrossRefGoogle Scholar
  15. 15.
    Ahn, S.A., Choi, Y.S., Kim, J.G., and Han, J.G., Surf. Coat. Technol., 2002, vol. 150, nos. 2–3, pp. 319–326.CrossRefGoogle Scholar
  16. 16.
    Manso, M., Jiménez, C., Morant, C., Herrero, P., et al., Biomaterials, 2000, vol. 2, pp. 1755–1761.CrossRefGoogle Scholar
  17. 17.
    Haddow, D.B., Kothari, S., James, P.F., and Short, R.D., Biomaterials, 1996, vol. 17, pp. 501–507.CrossRefGoogle Scholar
  18. 18.
    Yildirim, O.S., Aksakal, B., Hanyaloglu, S.C., Erdogant, F., and Okur, A., Spine (Philadelphia), 2006, vol. 31, no. 8, pp. E215–E220.CrossRefGoogle Scholar
  19. 19.
    Turniansky, A., Avnir, D., Bronstein, A., et al., J. Sol-Gel Sci. Technol., 1997, vol. 7, no. 1, pp. 135–143.CrossRefGoogle Scholar
  20. 20.
    Brinker, C.J., Raman, N.K., Logan, M.N., et al., J. Sol-Gel Sci. Technol., 1995, vol. 4, pp. 117–133.CrossRefGoogle Scholar
  21. 21.
    Yildirim, O.S., Aksakal, B., Celik, H., Vangolu, Y., and Okur, A., J. Med. Eng. Phys., 2005, vol. 27, no. 3, pp. 221–228.CrossRefGoogle Scholar
  22. 22.
    Zarzycki, J., J. Sol-Gel Sci. Technol., 1997, vol. 8, nos. 1–3, pp. 17–22.Google Scholar
  23. 23.
    de Sanctis, O., Gómez, L.G., Pellegri, N., et al., J. Non-Cryst. Solids, 1990, vol. 121, pp. 338–343.CrossRefGoogle Scholar
  24. 24.
    de Damborenea, J.J., Pellegrini, N., de Sanctis, O., and Durán, A., J. Sol-Gel Sci. Technol., 1995, vol. 4, pp. 239–244.CrossRefGoogle Scholar
  25. 25.
    Galliano, P., de Damborenea, J.J., Pascual, M.J., and Durán, A., J. Sol-Gel Sci. Technol., 1998, vol. 13, pp. 723–727.CrossRefGoogle Scholar
  26. 26.
    Gallardo, J. and Galliano, P., J. Sol-Gel Sci. Technol., 2001, vol. 21, pp. 65–74.CrossRefGoogle Scholar
  27. 27.
    Gallardo, J., Moreno, R., Galliano, P. and Durán, A., J. Sol-Gel Sci. Technol., 2000, vol. 19, pp. 107–111.CrossRefGoogle Scholar
  28. 28.
    Kokubo, T., J. Non-Cryst. Solids, 1990, vol. 120, pp. 138–151.CrossRefGoogle Scholar
  29. 29.
    Black, J., Biological Performance of Materials: Fundamentals of Biocompatibility, New York: Marcel Dekker, 1992, 2nd ed.Google Scholar
  30. 30.
    Pereira, M., Clark, A., and Hench, L., J. Am. Ceram. Soc., 1995, vol. 78, pp. 2463–2468.CrossRefGoogle Scholar
  31. 31.
    Pereira, M. and Hench, L., J. Sol-Gel Sci. Technol., 1996, vol. 7, pp. 59–68.CrossRefGoogle Scholar
  32. 32.
    Cho, S., Miyagi, F., Kokubo, T., Nakanishi, K., et al., J. Ceram. Soc. Jpn., 1996, vol. 104, pp. 399–404.CrossRefGoogle Scholar
  33. 33.
    Liao, C.-J., Lin, F.-H., Chen, K.-S., and Sun, J.-S., Biomaterials, 1999, vol. 20, pp. 1807–1813.CrossRefGoogle Scholar
  34. 34.
    Aksakal, B. and Hanyaloglu, C., J. Mater. Sci. Mater. Med., 2008, vol. 19, pp. 2097–2104.CrossRefGoogle Scholar
  35. 35.
    Singh, G., Singh, H., and Sidhu, B.S., J. Biomimetics, Biomater., Tissue Eng., 2013, vol. 18, no. 1, p. 103.  https://doi.org/10.4172/1662-100X.1000103 Google Scholar
  36. 36.
    Nicholson, J.W., The Chemistry of Medical and Dental Materials, Cambridge: Royal Society of Chemistry, 2002.Google Scholar
  37. 37.
    Metikos-Huković, M., Kwoka, A., and Piljac, J., Biomaterials, 2003, vol. 24, no. 21, pp. 3765–3775.CrossRefGoogle Scholar
  38. 38.
    Schwartz, Z. and Boyan, B.D., J. Cell Biochem., 1994, vol. 56, no. 3, pp. 340–347.CrossRefGoogle Scholar
  39. 39.
    Liu, D.M., Troczynski, T., and Tseng, W.J., Biomaterials, 2001, vol. 21, pp. 1721–1730.CrossRefGoogle Scholar
  40. 40.
    Anjaneyulu, U., Priyadarshini, B., Arul Xavier Stango, S., Chellappa, M., Geetha, M., and Vijayalakshmi, U., Mater. Technol.: Adv. Perform. Mater., 2010, vol. 20, pp. 1753–1761.Google Scholar
  41. 41.
    El Hadad Amir, A., Peón Avés, E., García-Galván, F.R., Barranco, V., et al., Materials (Basel), 2017, vol. 10, no. 2, p. 94.  https://doi.org/10.3390/ma10020094PMCID:PMC-5459123 CrossRefGoogle Scholar
  42. 42.
    Peón Avés, E., Soares Sader, M., Rodrigues Jerônimo, F.A., de Sena, L.Á., et al., Materia (Rio de Janeiro), 2007, vol. 12, no. 1.  https://doi.org/10.1590/S1517-70762007000100020
  43. 43.
    Aksakal, B. and Hanyaloglu, C., J. Mater. Sci. Mater. Med., 2008, vol. 19, pp. 2097–2104.  https://doi.org/10.1007/s10856-007-3304-inC CrossRefGoogle Scholar
  44. 44.
    Wei M., Ruys J., Milthorpe K., Sorrell C.C., and Evans J.H., J. Sol-Gel Sci. Technol., 2010, vol. 21, pp. 39–48.CrossRefGoogle Scholar
  45. 45.
    Metikoš-Huković, M., Tkalčec, E., Kwokal, A., and Piljac, J., Surf. Coat. Technol., 2003, vol. 165, no. 1, pp. 40–50.CrossRefGoogle Scholar
  46. 46.
    Mirhosseini, N., Crouse, P.L., Schmidt, M.J.J., Li, L., et al., Appl. Surf. Sci., 2007, vol. 253, no. 19, pp. 7738–7743.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.IKGPTUKapurthalaIndia
  2. 2.Mechanical Engineering Department BBSBECFatehgarh SahibIndia
  3. 3.CUIET, Chitkara UniversityPunjabIndia

Personalised recommendations