Advertisement

On Regularities in the Realization of Electrostatic Instability of an Electroconducting Charged Jet Moving Relative to a Material Medium

  • A. I. Grigor’evEmail author
  • S. O. Shiryaeva
  • G. E. Mikheev
Article
  • 6 Downloads

Abstract

Increments of instability in capillary waves relevant to the bending–deformation mode on the surfaces of a conducting charged cylindrical jet of the ideal incompressible liquid moving at a constant speed relative to an ideal, incompressible material dielectric environment have been studied. It was shown that, although the bending–deformation waves are the last to be excited, after the axisymmetric and bending waves, their increment is the largest. The entire phenomenological picture of the realization of instability of a jet in the mode of branching jets is determined by a successive excitement of capillary waves with various symmetries. It has been shown that the viscosity of a liquid is of primary importance in the realization of the mode of branching jets.

Keywords:

charged jet nonaxisymmetric capillary waves branching jets 

Notes

REFERENCES

  1. 1.
    Cloupeau, M. and Prunet Foch, B., J. Aerosol Sci., 1994, vol. 25, no. 6, pp. 1021–1035.CrossRefGoogle Scholar
  2. 2.
    Shiryaeva, S.O. and Grigor’ev, A.I., J. Electrostat., 1995, vol. 34, pp. 51–59.CrossRefGoogle Scholar
  3. 3.
    Jaworek, A. and Krupa, A., J. Aerosol Sci., 1999, vol. 30, no. 7, pp. 873–893.CrossRefGoogle Scholar
  4. 4.
    Chen, X., Jia, L., Yin, X., and Cheng, J., Phys. Fluids, 2005, vol. 17, no. 032101, pp. 1–7.Google Scholar
  5. 5.
    Kim, O.V. and Dunn, P.F., Langmuir, 2010, vol. 26, pp. 15807–15813.CrossRefGoogle Scholar
  6. 6.
    Kim, H.-G., Kim, H.-J., Lee, M.-H., and Kim, J.-H., Asian J. Atmos. Environ., 2014, vol. 8, no. 2, pp. 89–95.Google Scholar
  7. 7.
    Kim, H.H., Teramoto, Y., Negishi, N., Ogata, A., et al., J. Aerosol Sci., 2014, vol. 76, pp. 98–114.CrossRefGoogle Scholar
  8. 8.
    Pongrac, B., Kim, H.H., Janda, M., Martisovits, V., et al., J. Phys. D: Appl. Phys., 2014, vol. 47, p. 315202.CrossRefGoogle Scholar
  9. 9.
    Verdoold, S., Agostinho, L.L.F., Yurteri, C.U., and Marijnissen, J.C.M., J. Aerosol Sci., 2014, vol. 67, pp. 87–103.CrossRefGoogle Scholar
  10. 10.
    Park, I., Kim, S.B., Hong, W.S., and Kim, S.S., J. Aerosol Sci., 2015, vol. 89, pp. 26–30.CrossRefGoogle Scholar
  11. 11.
    Grigor’ev, A.I. and Shiryaeva, S.O., Elektron. Obrab. Mater., 2018, vol. 54, no. 2, pp. 23–27.Google Scholar
  12. 12.
    Grigor’ev, A.I., Tech. Phys., 2009, vol. 54, no. 4, pp. 482–490.CrossRefGoogle Scholar
  13. 13.
    Grigor’ev, A.I. and Shiryaeva, S.O., Surf. Eng. Appl. Electrochem., 2009, vol. 45, no. 6, pp. 465–470.CrossRefGoogle Scholar
  14. 14.
    Shiryaeva, S.O., Tech. Phys., 2011, vol. 56, no. 6, pp. 782–787.CrossRefGoogle Scholar
  15. 15.
    Tonks, L., Phys. Rev., 1935, vol. 48, pp. 562–568.CrossRefGoogle Scholar
  16. 16.
    Wilson, C.T. and Taylor, G.I., Proc. Cambridge Philos. Soc., 1925, vol. 22, no. 5, pp. 728–730.CrossRefGoogle Scholar
  17. 17.
    Zubarev, N.M., J. Exp. Theor. Phys. Lett., 2001, vol. 73, no. 10, pp. 544–548.CrossRefGoogle Scholar
  18. 18.
    Grigor’ev, A.I., Shiryaeva, S.O., Belonozhko, D.F., and Klimov, A.V., Elektron. Obrab. Mater., 2004, no. 4, pp. 34–40.Google Scholar
  19. 19.
    Frenkel’, Ya.I., Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 348–350.Google Scholar
  20. 20.
    Taylor, G.I. and McEwan, A.D., J. Fluid Mech., 1965, vol. 22, no. 1, pp. 1–15.CrossRefGoogle Scholar
  21. 21.
    Ostroumov, G.A., Vzaimodeistvie elektricheskikh i gidrodinamicheskikh polei (Interaction of Electric and Hydrodynamic Fields), Moscow: Nauka, 1979.Google Scholar
  22. 22.
    Entov, V.M. and Yarin, A.L., Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza, 1984, vol. 17, pp. 112–197.Google Scholar
  23. 23.
    Eggers, J., Rep. Prog. Phys., 2008, vol. 71, no. 36, pp. 1–79.CrossRefGoogle Scholar
  24. 24.
    Zhakin, A.I., Phys.-Usp., 2013, vol. 56, no. 2, pp. 141–163.CrossRefGoogle Scholar
  25. 25.
    Macky, W.A., Proc. R. Soc. London, Ser. A, 1931, vol. 133, no. 822, pp. 565–587.CrossRefGoogle Scholar
  26. 26.
    Taylor, G., Proc. R. Soc. London, Ser. A, 1969, vol. 313, pp. 453–470.CrossRefGoogle Scholar
  27. 27.
    Saville, D., Phys. Fluids, 1971, vol. 14, no. 6, pp. 1095–1099.CrossRefGoogle Scholar
  28. 28.
    Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Washington, DC: U.S. Gov. Print. Off., 1972.zbMATHGoogle Scholar
  29. 29.
    Grigor’ev, A.I., Shiryaeva, S.O., and Petrushkov, N.A., Tech. Phys., 2011, vol. 56, no. 2, pp. 171–177.CrossRefGoogle Scholar
  30. 30.
    Grigor’ev, A.I., Tech. Phys., 2001, vol. 46, no. 10, pp. 1205–1212.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. I. Grigor’ev
    • 1
    Email author
  • S. O. Shiryaeva
    • 1
  • G. E. Mikheev
    • 1
  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations