Self-Propagating High-Temperature Synthesis in a Ti−Al−C Powder System Using Different Carbon Precursors

  • D. I. ChelpanovEmail author
  • A. N. Yushchishina
  • N. I. Kuskova


The processes associated with self-propagating high-temperature synthesis (SHS) in the Ti−Al−C powder system are studied, with hexamethylenetetramine amine (С6H12N4), polytetrafluoroethylene, and amorphous carbon (aC) used as carbon precursors. The key parameters of SHS and way the it unfolds are shown to be determined by the carbon precursor used and a technique employed for preparing initial powder samples. With the indicated carbon precursors, we are able to prepare nanostructured composite materials containing titanium carbide and the Ti2AlC MAX phase, while the Ti3AlC2 MAX phase is formed under specific conditions in the Ti−Al−С6H12N4 and Ti−Al−aC powder systems.


self-propagating high-temperature synthesis MAX phases titanium carbide carbon precursors 



  1. 1.
    Zhu, C.-C., Zhu, J., Wu, H., and Lin, H., Rare Met., 2015, vol. 34, no. 2, pp. 107–110.CrossRefGoogle Scholar
  2. 2.
    Varma, A., Adv. Chem. Eng., 1998, vol. 24, pp. 78–226.Google Scholar
  3. 3.
    Bystrzejewski, M., Szala, M., Kiciński, W., Kaszuwara, W., et al., New Carbon Mater., 2010, vol. 25, no. 2, pp. 81–88.CrossRefGoogle Scholar
  4. 4.
    Amosov, A.P., Borovinskaya, I.P., and Merzhanov, A.G., Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov (Powder Self-Propagating High-Temperature Synthesis of Materials), Antsiferov, V.N., Ed., Moscow: Mashinostorenie, 2007.Google Scholar
  5. 5.
    Barsoum, M.W., El-Raghy, T. and Ali, M., Metall. Mater. Trans. A, 2000, vol. 31, pp. 1857–1865.CrossRefGoogle Scholar
  6. 6.
    Yan, M., Mei, B, Zhu, J., et al., Ceram. Int. J., 2008, vol. 34, no. 6, pp. 1439–1442.CrossRefGoogle Scholar
  7. 7.
    Starostina, A.V., Prikhna, T.A., Karpets, M.V., et al., J. Superhard Mater., 2011, vol. 33, no. 5, pp. 307–314.CrossRefGoogle Scholar
  8. 8.
    Prikhna, T.A., Dub, S.N., Starostina, A.V., Karpets, M.V., et al., J. Superhard Mater., 2012, vol. 34, no. 2, pp. 102–109.CrossRefGoogle Scholar
  9. 9.
    Nagub, M., Kurtoglu, M., Presser, V., Lu J., et al., Adv. Mater., 2011, vol. 23, no. 37, pp. 4248–4253.CrossRefGoogle Scholar
  10. 10.
    Syzonenko, O., Sheregii, E., Prokhorenko, S., Torpakov, A., et al., Mach., Technol., Mater., 2017, no. 4, pp. 171–173.Google Scholar
  11. 11.
    Sizonenko, O.M., Lipyan, E.V., Zaichenko, A.D., Torpakov, A.S., Pristash, M.S., et al., UA Patent 121019, Byull. Izobret., 2017, no. 22.Google Scholar
  12. 12.
    Kuskova, N.I., Baklar’, V.Yu., Terekhov, A.Yu., Yushchishina, A.N., et al., Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 2, pp. 101–105.CrossRefGoogle Scholar
  13. 13.
    Chelpanov, D.I., Kuskova, N.I., and Smal’ko, A.O., UA Patent 104443, Byull. Izobret., 2016, no. 2.Google Scholar
  14. 14.
    Chelpanov, D.I., Baklar’, V.Yu., Kuskova, N.I., and Korzinova, A.N., Visn. Nats. Tekh. Univ. KhPI, 2016, no. 51, pp. 115–120.Google Scholar
  15. 15.
    Rogachev, A.S. and Mukasyan, A.S., Combustion for Material Synthesis, Boca Raton, FL: CRC Press, 2014.CrossRefGoogle Scholar
  16. 16.
    Sheludyak, Yu.E., Kashporov, L.Ya., Malinin, L.A., and Tsalkov, V.N., Teplofizicheskie svoistva komponentov goryuchikh sistem (Thermophysical Properties of the Components of Combustible Systems), Moscow: Inform TEI, 1992.Google Scholar
  17. 17.
    Suryanarayana, C. and Grant Norton, M., X-ray Diffraction: A Practical Approach, New York: Springer-Verlag, 1998.CrossRefGoogle Scholar
  18. 18.
    Mote, V., Purushotham, Y., and Dole, B., J. Theor. Appl. Phys., 2012, vol. 6, pp. 1–8.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • D. I. Chelpanov
    • 1
    Email author
  • A. N. Yushchishina
    • 1
  • N. I. Kuskova
    • 1
  1. 1.Institute of Pulse Processes and Technologies, National Academy of Sciences of UkraineNikolaevUkraine

Personalised recommendations