Advertisement

Some Problems in Simulation of the Thermodynamic Properties of Droplets

  • S. A. BaranovEmail author
  • S. Sh. RekhviashviliEmail author
  • A. A. Sokurov
Article
  • 6 Downloads

Abstract

In this paper, the Gibbs dividing surface method is used to derive a formula to determine curvature-dependent surface tension in a system with two phases. The well-known Tolman formula is a special case of this formula. The problem of a sessile droplet is considered. The Bashforth–Adams equation analogue (in view of curvature-dependent surface tension) is obtained, and the numerical solution of the equation is carried out. It is shown that if the droplet size is not very large relative to the thickness of the surface layer (micro- or nanodroplets), the dependence of the surface tension on the curvature is very important. In addition, the case is considered where the diameters of cylindrical nanodroplets are shorter than the Tolman length.

Keywords:

size dependence of surface tension Tolman length phase transition 

Notes

REFERENCES

  1. 1.
    Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967.Google Scholar
  2. 2.
    Ono, S. and Kondo, S., Molecular Theory of Surface Tension in Liquids, Berlin: Springer-Verlag, 1960.zbMATHGoogle Scholar
  3. 3.
    Rowlinson, J.S. and Widom, B., Molecular Theory of Capillarity, Oxford: Clarendon, 1982.Google Scholar
  4. 4.
    Rekhviashvili, S.Sh. and Kishtikova, E.V., Tech. Phys., 2011, vol. 56, no. 1, pp. 143–146.CrossRefGoogle Scholar
  5. 5.
    Ermakov, G.V. and Semenova, N.M., Fazovye prevrashcheniya i neravnovesnye protsessy (Phase Transformations and Non-Equilibrium Processes), Sverdlovsk, 1980, pp. 81–84.Google Scholar
  6. 6.
    Fedorov, V.B. and Malyukova, L.V., Dokl. Akad. Nauk SSSR, 1986, vol. 288, no. 3, pp. 673–678.Google Scholar
  7. 7.
    Ermakov, G.V. and Lipnyagov, E.V., Metastabil’nye sostoyaniya i fazovye perekhody (Metastable States and Phase Transitions), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 1997, pp. 100–110.Google Scholar
  8. 8.
    Kalova, J. and Mares, R., Int. J. Thermophys., 2015, vol. 36, no. 10, pp. 2862–2868.CrossRefGoogle Scholar
  9. 9.
    Burian, S., Isaiev, M., Termentzidis, K., Sysoev, V., et al., Phys. Rev. E, 2017, vol. 95, p. 062801.CrossRefGoogle Scholar
  10. 10.
    Magomedov, M.N., Izuchenie mezhatomnogo vzaimodeistviya, obrazovaniya vakansii i samodiffuzii v kristallakh (The Analysis of Interatomic Interaction, Formation of Vacancies, and Self-Diffusion in Crystals), Moscow: Fizmatlit, 2010.Google Scholar
  11. 11.
    Adamson, A.W., Physical Chemistry of Surfaces, New York: Wiley, 1973.Google Scholar
  12. 12.
    Rusanov, A.I and Prokhorov, V.A., Interfacial Tensiometry, Amsterdam: Elsevier, 1996.Google Scholar
  13. 13.
    Jaycock, M.J. and Parfitt, G.D., Chemistry of Interfaces, Chichester: Ellis Horwood, 1981.Google Scholar
  14. 14.
    Tolman, R.C., J. Chem. Phys., 1949, vol. 17, no. 3, pp. 333–337.CrossRefGoogle Scholar
  15. 15.
    Miyahara, M., Kanda, H., Yoshioka, T., and Okazaki, M., Langmuir, 2000, vol. 16, no. 9, pp. 4293–4299.CrossRefGoogle Scholar
  16. 16.
    Shcherbakov, L.M., Issledovanie v oblasti poverkhnostnykh sil (Studies in the Field of Surface Tensions), Moscow: Akad. Nauk SSSR, 1961, pp. 28–37.Google Scholar
  17. 17.
    van der Waals, J.D. and Kohnstamm, P., Lehrbuch der Thermostatik, Vol. 1: Allgemeine Thermostatik, Leipzig: Verlag von Barth, 1927.Google Scholar
  18. 18.
    Landau, L.D., Phys. Z. Sowjetunion, 1937, vol. 11, pp. 26–36.Google Scholar
  19. 19.
    Landau, L.D., Phys. Z. Sowjetunion, 1937, vol. 11, pp. 545–553.Google Scholar
  20. 20.
    Baranov, S.A., Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties and Characterization Techniques, Zurich: Springer-Verlag, 2015, pp. 1057–1069.Google Scholar
  21. 21.
    Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1958, vol. 28, no. 2, pp. 258–267.CrossRefGoogle Scholar
  22. 22.
    Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1959, vol. 30, no. 5, pp. 1121–1124.CrossRefGoogle Scholar
  23. 23.
    Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1959, vol. 30, no. 5, pp. 688–699.CrossRefGoogle Scholar
  24. 24.
    Cahn, J.W., Acta Metall., 1961, vol. 9, no. 9, pp. 795–808.CrossRefGoogle Scholar
  25. 25.
    Cahn, J.W., Acta Metall., 1966, vol. 14, no. 12, pp. 1685–1692.CrossRefGoogle Scholar
  26. 26.
    Hillert, M.A., Acta Metall., 1961, vol. 9, no. 6, pp. 525–535.CrossRefGoogle Scholar
  27. 27.
    Cahn, J.W., J. Chem. Phys., 1965, vol. 242, no. 2, pp. 166–179.Google Scholar
  28. 28.
    Khachaturyan, A.G., Theory of Structural Transformations in Solids, New York: Wiley, 1983.Google Scholar
  29. 29.
    Radkevich, E.V., Sovremennaya matematika i ee prilozheniya (Modern Mathematics and Its Application), Tbilisi: Inst. Kibern., Akad. Nauk Gruz., 2003, pp. 77–97.Google Scholar
  30. 30.
    Rapini, A. and Papoular, M.J., J. Phys. Colloq., 1969, vol. 30, pp. C4–C54.CrossRefGoogle Scholar
  31. 31.
    Semenchenko, V.K., Poverkhnostnye yavleniya v rasplavakh i voznikayushchikh iz nikh tverdykh fazakh (Surface Phenomena in Melts and Solid Phases Emerged from These), Nalchik: Kabard.-Balkar. Knizhn. Izd., 1965, pp. 7–11.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics, Academy of Sciences of MoldovaChisinauRepublic of Moldova
  2. 2.Shevchenko State University of Pridnestrov’eTiraspolRepublic of Moldova
  3. 3.Institute of Applied Mathematics and AutomationNalchikRussia

Personalised recommendations