# Some Problems in Simulation of the Thermodynamic Properties of Droplets

- 6 Downloads

### Abstract

In this paper, the Gibbs dividing surface method is used to derive a formula to determine curvature-dependent surface tension in a system with two phases. The well-known Tolman formula is a special case of this formula. The problem of a sessile droplet is considered. The Bashforth–Adams equation analogue (in view of curvature-dependent surface tension) is obtained, and the numerical solution of the equation is carried out. It is shown that if the droplet size is not very large relative to the thickness of the surface layer (micro- or nanodroplets), the dependence of the surface tension on the curvature is very important. In addition, the case is considered where the diameters of cylindrical nanodroplets are shorter than the Tolman length.

## Keywords:

size dependence of surface tension Tolman length phase transition## Notes

## REFERENCES

- 1.Rusanov, A.I.,
*Fazovye ravnovesiya i poverkhnostnye yavleniya*(Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967.Google Scholar - 2.Ono, S. and Kondo, S.,
*Molecular Theory of Surface Tension in Liquids*, Berlin: Springer-Verlag, 1960.zbMATHGoogle Scholar - 3.Rowlinson, J.S. and Widom, B.,
*Molecular Theory of Capillarity*, Oxford: Clarendon, 1982.Google Scholar - 4.Rekhviashvili, S.Sh. and Kishtikova, E.V.,
*Tech. Phys*., 2011, vol. 56, no. 1, pp. 143–146.CrossRefGoogle Scholar - 5.Ermakov, G.V. and Semenova, N.M.,
*Fazovye prevrashcheniya i neravnovesnye protsessy*(Phase Transformations and Non-Equilibrium Processes), Sverdlovsk, 1980, pp. 81–84.Google Scholar - 6.Fedorov, V.B. and Malyukova, L.V.,
*Dokl. Akad. Nauk SSSR*, 1986, vol. 288, no. 3, pp. 673–678.Google Scholar - 7.Ermakov, G.V. and Lipnyagov, E.V.,
*Metastabil’nye sostoyaniya i fazovye perekhody*(Metastable States and Phase Transitions), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 1997, pp. 100–110.Google Scholar - 8.Kalova, J. and Mares, R.,
*Int. J. Thermophys*., 2015, vol. 36, no. 10, pp. 2862–2868.CrossRefGoogle Scholar - 9.Burian, S., Isaiev, M., Termentzidis, K., Sysoev, V., et al.,
*Phys. Rev. E*, 2017, vol. 95, p. 062801.CrossRefGoogle Scholar - 10.Magomedov, M.N.,
*Izuchenie mezhatomnogo vzaimodeistviya, obrazovaniya vakansii i samodiffuzii v kristallakh*(The Analysis of Interatomic Interaction, Formation of Vacancies, and Self-Diffusion in Crystals), Moscow: Fizmatlit, 2010.Google Scholar - 11.Adamson, A.W.,
*Physical Chemistry of Surfaces*, New York: Wiley, 1973.Google Scholar - 12.Rusanov, A.
*I and Prokhorov, V.A., Interfacial Tensiometry*, Amsterdam: Elsevier, 1996.Google Scholar - 13.Jaycock, M.J. and Parfitt, G.D.,
*Chemistry of Interfaces*, Chichester: Ellis Horwood, 1981.Google Scholar - 14.Tolman, R.C.,
*J. Chem. Phys*., 1949, vol. 17, no. 3, pp. 333–337.CrossRefGoogle Scholar - 15.Miyahara, M., Kanda, H., Yoshioka, T., and Okazaki, M.,
*Langmuir*, 2000, vol. 16, no. 9, pp. 4293–4299.CrossRefGoogle Scholar - 16.Shcherbakov, L.M.,
*Issledovanie v oblasti poverkhnostnykh sil*(Studies in the Field of Surface Tensions), Moscow: Akad. Nauk SSSR, 1961, pp. 28–37.Google Scholar - 17.van der Waals, J.D. and Kohnstamm, P.,
*Lehrbuch der Thermostatik*, Vol. 1:*Allgemeine Thermostatik*, Leipzig: Verlag von Barth, 1927.Google Scholar - 18.Landau, L.D.,
*Phys. Z. Sowjetunion*, 1937, vol. 11, pp. 26–36.Google Scholar - 19.Landau, L.D.,
*Phys. Z. Sowjetunion*, 1937, vol. 11, pp. 545–553.Google Scholar - 20.Baranov, S.A.,
*Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties and Characterization Techniques*, Zurich: Springer-Verlag, 2015, pp. 1057–1069.Google Scholar - 21.Cahn, J.W. and Hilliard, D.J.E.,
*J. Chem. Phys*., 1958, vol. 28, no. 2, pp. 258–267.CrossRefGoogle Scholar - 22.Cahn, J.W. and Hilliard, D.J.E.,
*J. Chem. Phys*., 1959, vol. 30, no. 5, pp. 1121–1124.CrossRefGoogle Scholar - 23.Cahn, J.W. and Hilliard, D.J.E.,
*J. Chem. Phys*., 1959, vol. 30, no. 5, pp. 688–699.CrossRefGoogle Scholar - 24.Cahn, J.W.,
*Acta Metall*., 1961, vol. 9, no. 9, pp. 795–808.CrossRefGoogle Scholar - 25.Cahn, J.W.,
*Acta Metall*., 1966, vol. 14, no. 12, pp. 1685–1692.CrossRefGoogle Scholar - 26.Hillert, M.A.,
*Acta Metall*., 1961, vol. 9, no. 6, pp. 525–535.CrossRefGoogle Scholar - 27.Cahn, J.W.,
*J. Chem. Phys*., 1965, vol. 242, no. 2, pp. 166–179.Google Scholar - 28.Khachaturyan, A.G.,
*Theory of Structural Transformations in Solids*, New York: Wiley, 1983.Google Scholar - 29.Radkevich, E.V.,
*Sovremennaya matematika i ee prilozheniya*(Modern Mathematics and Its Application), Tbilisi: Inst. Kibern., Akad. Nauk Gruz., 2003, pp. 77–97.Google Scholar - 30.Rapini, A. and Papoular, M.J.,
*J. Phys. Colloq*., 1969, vol. 30, pp. C4–C54.CrossRefGoogle Scholar - 31.Semenchenko, V.K.,
*Poverkhnostnye yavleniya v rasplavakh i voznikayushchikh iz nikh tverdykh fazakh*(Surface Phenomena in Melts and Solid Phases Emerged from These), Nalchik: Kabard.-Balkar. Knizhn. Izd., 1965, pp. 7–11.Google Scholar