Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 6, pp 623–630 | Cite as

Synthesis, Characterization and Applications of Single Walled Carbon Nanotube–Pt–P2O5 Sensors for Absolute Humidity Measurements

  • S. I. SpiridonEmail author
  • E. I. Ionete
  • B. F. Monea
  • N. Sofilca
  • D. Ebrasu-Ion
  • S. Enache
  • A. Vaseashta


We report the synthesis and characterization of sensors based on integrated single walled carbon nanotube–Pt–P2O5 active layer, for absolute humidity (AH) measurements. The sensors were obtained by direct deposition of an active doped layer to the surface of an interdigitated planar sensor type, by the drop cast method. For the experimental investigation, two sensors with the same active layer were fabricated and tested for detecting water humidity in inert gas at room temperature. The sensing mechanism of the fabricated sensors is characterized by the electrical variations in the sensors resistance, as a function of the AH related to the water trapping effect produced at the surface of the active layer. This physical behavior confirms the existence of a resistive path formed between the structured microelectrodes. The resistivity of the layer increases or decreases proportional to the raise or decline of the AH values in a range of 1 to 90% for the tested gas. This is caused by an electrolysis process that takes place under the sensors supply voltage and is influenced further by Pt catalyst. These sensors, compared to classical industrial humidity sensors, exhibit noteworthy sensing, stability and recovery capabilities and have a tremendous potential for integration in lowpowered sensor-platforms for instrumentation and device fabrication processes.


carbon nanotubes humidity sensors response time P2O5 sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Traversa, E., Sens. Actuators, B, 1995, vol. 23, nos. 2–3, pp. 135–156.CrossRefGoogle Scholar
  2. 2.
    Cheng, B., Tian, B., Xie, C., Xiao, Y., et al., J. Mater. Chem., 2011, vol. 21, no. 6, pp. 1907–1912.CrossRefGoogle Scholar
  3. 3.
    Kuang, Q., Lao, C., Wang, Z.L., Xie, Z., et al., J. Am. Chem. Soc., 2007, vol. 129, no. 19, pp. 6070–6071.CrossRefGoogle Scholar
  4. 4.
    Pandey, R.K., Hossain, M.D., Moriyama, S., and Higuchi, M., J. Mater. Chem. A, 2014, vol. 2, no. 21, pp. 7754–7758.CrossRefGoogle Scholar
  5. 5.
    Sze, S.M., Semiconductor Sensors, New York: Wiley, 1994.Google Scholar
  6. 6.
    Ionete, E.I., et al., Dig. J. Nanomater. Biostruct., 2014, vol. 9, no. 2, pp. 511–517.Google Scholar
  7. 7.
    Jung, D., Han, M., and Lee, G.S., Mater. Lett., 2014, 122, pp. 281–284.CrossRefGoogle Scholar
  8. 8.
    Li, Y., Wu, T., and Yang, M., Sens. Actuators, B, 2014, vol. 203, pp. 63–70.CrossRefGoogle Scholar
  9. 9.
    Rittersma, Z.M., Sens. Actuators, A, 2002, vol. 96, pp. 196–210.CrossRefGoogle Scholar
  10. 10.
    Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C., et al., Science, 2005, vol. 307, no. 5717, pp. 1942–1945.CrossRefGoogle Scholar
  11. 11.
    Modi, A., Koratkar, N., Lass, E., Wei, B., et al., Nature, 2003, vol. 424, pp. 171–174.CrossRefGoogle Scholar
  12. 12.
    Varghese, O.K., Kichambre, P.D., Gong, D., Ong, K.G., et al., Sens. Actuators, B, 2001, vol. 81, no. 1, pp. 32–41.CrossRefGoogle Scholar
  13. 13.
    Chung, J., Lee, K.H., Lee, J.H., Troya, D., et al., Nanotechnology, 2004, vol. 15, no. 11, pp. 1596–1602.CrossRefGoogle Scholar
  14. 14.
    Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., et al., Carbon, 2006, vol. 44, no. 15, pp. 3149–3160.CrossRefGoogle Scholar
  15. 15.
    Yu, R., Zhan, M., Cheng, D., Yang, S., et al., Chem. Mater., 1998, vol. 10, no. 3, pp. 718–722.CrossRefGoogle Scholar
  16. 16.
    Sung, D., Hong, S., Kim, Y.H., Park, N., et al., Appl. Phys. Lett., 2006, vol. 89, no. 24, p. 243110.CrossRefGoogle Scholar
  17. 17.
    Chikkadia, K., Muotha, M., Beckmanna, N., Romana, C., et al., Procedia Eng., 2014, vol. 87, pp. 704–707.CrossRefGoogle Scholar
  18. 18.
    Aouissi, A., Al-Suhybani, A.A., Al-Mayouf, A.M., and Saleh, M.S.A., Int. J. Electrochem. Sci., 2014, vol. 9, no. 6, pp. 2762–2774.Google Scholar
  19. 19.
    Atieh, M.A., Bakather, O.Y., Al-Tawbini, B., Bukhari, A.A., et al., Bioinorg. Chem. Appl., 2010, art. ID 603978. doi 10.1155/2010/603978Google Scholar
  20. 20.
    Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., Mirghami, M.E., et al., J. Environ. Sci., 2009, vol. 21, no. 4, pp. 539–544.CrossRefGoogle Scholar
  21. 21.
    Holmes, S.D. and Courts, S.S., in Temperature: Its Measurement and Control in Science and Industry, Schooley, J.F., Ed., New York: Am. Inst. Phys., 1992, vol. 6, part 2, pp. 1225–1230.Google Scholar
  22. 22.
    Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S., Appl. Phys. Lett., 1992, vol. 60, no. 18, p. 2204.CrossRefGoogle Scholar
  23. 23.
    Moraes, M.C., Galeazzo, E., Peres, H.E.M., Ramirez-Fernandez, F.J., et al., in Proc. 29th Symp. on Microelectronics Technology and Devices, Piscataway, NJ.: Inst. Electr. Electron. Eng., 2014, pp. 7–10.Google Scholar
  24. 24.
    Jung, D., Kim, J., and Lee, G.S., Sens. Actuators, B, 2015, vol. 223, pp. 11–17.CrossRefGoogle Scholar
  25. 25.
    Farahani, H., Wagiran, R., and Hamilton, M.N., Sensors, 2014, vol. 14, pp. 7881–7939. doi 10.3390/s140507881CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. I. Spiridon
    • 1
    Email author
  • E. I. Ionete
    • 1
  • B. F. Monea
    • 1
  • N. Sofilca
    • 1
  • D. Ebrasu-Ion
    • 1
  • S. Enache
    • 1
  • A. Vaseashta
    • 2
  1. 1.National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm, ValceaRamnicu ValceaRomania
  2. 2.International Clean Water Institute, Manassas, VA and NJCU—State University of New JerseyJersey CityUSA

Personalised recommendations