Advertisement

Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 6, pp 614–622 | Cite as

Control of the State of Primary Alkaline Zn–MnO2 Cells Using the Electrochemical Impedance Spectroscopy Method

  • O. L. Riabokin
  • A. V. Boichuk
  • K. D. PershinaEmail author
Article
  • 7 Downloads

Abstract

The commercial primary alkaline zinc–manganese cells after current loads and thermal treatment are studied using electrochemical impedance spectroscopy. The components of electric circuits and spectrum data responding to the changes in the investigated samples are identified on the basis of the analysis of impedance spectra and model equivalent circuits. It is found experimentally that the capacity dispersion is a parameter sensitive to any effects on alkaline zinc–manganese cells. The model of the electrode–electrolyte interface is used to evaluate the endurance of primary cells at thermal action.

Keywords

alkaline zinc–manganese cell impedance equivalent circuit battery endurance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christophersen, J.P., Motloch, C.G., Morrison, J.L., and Albrecht, W., US Patent 0257681 A1, 2007.Google Scholar
  2. 2.
    Huct, F., J. Power Sources, 1998, vol. 70, no. 1, pp. 59–69. doi 10.1016/S0378-7753(97)02665-7CrossRefGoogle Scholar
  3. 3.
    Howey, D.A., Yufit, V., Mitcheson, P.D., Offer, G.J., et al., in World Electric Vehicle Symp. and Exhibition (EVS27), Barcelona, Spain, November 17–20, 2013, Piscataway, NJ.: Inst. Electr. Electron. Eng., 2013, pp. 2096–2102. doi 10.1109/EVS. 2013.6914960Google Scholar
  4. 4.
    Baert, D.H.J. and Alfons, A.K., in The 25th Int. Telecommunications Energy Conf., Yokohama, Japan, October 23–23 2003, Piscataway, NJ.: Inst. Electr. Electron. Eng., 2004, vol. 12, no. E87-B, pp. 3478–3484.Google Scholar
  5. 5.
    Schmidt, J.P., Chrobak, T., Ender, M., Illig, J., et al., J. Power Sources, 2011, vol. 196, no. 12, pp. 5342–5348. doi 10.1016/j.jpowsour.2010.09.121CrossRefGoogle Scholar
  6. 6.
    Shih, H. and Lo, T.-C., Electrochemical Impedance Spectroscopy for Battery Research and Development, Farnborough: Solartron Instruments, 1996.Google Scholar
  7. 7.
    Karden, E. and De Doncker, R., Proc. Int. Telecommunications Energy Conf. INTELEC’01, Edinburgh, United Kingdom, October 14–18, 2001, Piscataway, NJ.: Inst. Electr. Electron. Eng., 2001, pp. 65–72. doi 10.1049/cp:20010580Google Scholar
  8. 8.
    Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, Hoboken: Wiley, 2005.CrossRefGoogle Scholar
  9. 9.
    Einerhand, R.E.F., Visscher, W., de Goeij, J.J.M., and Barendrecht, E., J. Electrochem. Soc., 1991, vol. 138, no. 1, pp. 7–17. doi 10.1149/1.2085582CrossRefGoogle Scholar
  10. 10.
    Bockris, J.O’M., Nagy, Z., and Damjanovic, A., J. Electrochem. Soc., 1972, vol. 119, no. 3, pp. 285–295. doi 10.1149/1.2404188CrossRefGoogle Scholar
  11. 11.
    McBreen, J., J. Electrochem. Soc., 1972, vol. 119, no. 12, pp. 1620–1628. doi 10.1149/1.2404060CrossRefGoogle Scholar
  12. 12.
    Conway, B.E. and Kannangara, D.C.W., J. Electrochem. Soc., 1987, vol. 134, no. 4, pp. 906–918. doi 10.1149/1.2100594CrossRefGoogle Scholar
  13. 13.
    See, D.M. and White, R.E., J. Chem. Eng. Data, 1997, vol. 42, pp. 1266–1268. doi 10.1021/je970140xCrossRefGoogle Scholar
  14. 14.
    Mao, Z. and White, R.E., J. Electrochem. Soc., 1992, vol. 139, no. 4, pp. 1105–1114. doi 10.1149/1.2069348CrossRefGoogle Scholar
  15. 15.
    Ghavami, R.K., Rafiei, Z., and Tabatabaei, S.M., J. Power Sources, 2007, vol. 164, no. 2, pp. 934–946. doi 10.1016/j.jpowsour.2006.10.084CrossRefGoogle Scholar
  16. 16.
    Cabral, M., Pedrosa, F., and Margarido, F., J. Environ. Technol., 2013, vol. 34, no. 10, pp. 1283–1295. doi 10.1080/09593330.2012.745621CrossRefGoogle Scholar
  17. 17.
    Gilliam, R.J., Graydon, J.W., Kirk, D.W., and Thorpe, S.J., Int. J. Hydrogen Energy, 2007, vol. 32, no. 3, pp. 359–364. doi 10.1016/j.ijhydene.2006.10.062CrossRefGoogle Scholar
  18. 18.
    Trasatti, S. and Petri, O.A., Pure Appl. Chem., 1991, vol. 63, no. 5, pp. 711–734.CrossRefGoogle Scholar
  19. 19.
    Kerner, Z. and Pajkossy, T., Electrochim. Acta, 2000, vol. 46, nos. 2–3, pp. 207–211. doi 10.1016/S0013-4686(00)00574-0CrossRefGoogle Scholar
  20. 20.
    Boukamp, A.B., Solid State Ionics, 2004, vol. 169, nos. 1–4, pp. 65–73. doi 10.1016/j.ssi.2003.07.002CrossRefGoogle Scholar
  21. 21.
    Zoltowski, P., J. Electroanal. Chem., 1998, vol. 443, no. 1, pp. 149–154. doi 10.1016/S0022-0728(97)00490-7CrossRefGoogle Scholar
  22. 22.
    Macdonald, J.R., Ann. Biomed. Eng., 1992, vol. 20, pp. 289–305.CrossRefGoogle Scholar
  23. 23.
    Nyikos, L. and Pajkossy, T., Electrochim. Acta, 1985, vol. 30, no. 11, pp. 1533–1540. doi 10.1016/0013-4686(85)80016-5CrossRefGoogle Scholar
  24. 24.
    Jorcin, J.-B., Orazem, M.E., Pébère, N., and Tribollet, B., Electrochim. Acta, 2006, vol. 51, nos. 8–9, pp. 1473–1479. doi 10.1016/j.electacta.2005.02.128CrossRefGoogle Scholar
  25. 25.
    Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2006.Google Scholar
  26. 26.
    Minakshi, M. and Thurgate, S., Surf. Interface Anal., 2009, vol. 41, no. 1, pp. 56–60. doi 10.1002/sia.2978CrossRefGoogle Scholar
  27. 27.
    Yakimenko, L.M., Elektrodnye materialy v prikladnoi elektrokhimii (Electrode Materials in Applied Electrochemistry), Moscow: Khimiya, 1977.Google Scholar
  28. 28.
    Morgan, J.J., Geochim. Cosmochim. Acta, 2005, vol. 69, no. 1, pp. 35–48. doi 10.1016/j.gca.2004.06.013CrossRefGoogle Scholar
  29. 29.
    Wang, K., Shi, Y.-H., Li, H.-H., Wang, H.-F., et al., Electrochim. Acta, 2016, vol. 215, pp. 267–275. doi 10.1016/j.electacta.2016.08.085CrossRefGoogle Scholar
  30. 30.
    Tang, Y., Chen, S., Chen, T., Guo, W., et al., J. Mater. Chem. A, 2017, vol. 5, no. 8, pp. 3923–3931. doi 10.1039/C6TA09997ACrossRefGoogle Scholar
  31. 31.
    Kopelman, R., Science, 1988, vol. 241, pp. 1620–1626.CrossRefGoogle Scholar
  32. 32.
    Bisquert, J. and Compte, A., J. Electroanal. Chem., 2001, vol. 499, pp. 112–120. doi 10.1016/S0022- 0728(00)00497-6CrossRefGoogle Scholar
  33. 33.
    Gassa, L.M., Mishima, H.T., López de Mishima, B.A., and Vilche, J.R., Electrochim. Acta, 1997, vol. 42, no. 11, pp. 1717–1723. doi 10.1016/S0013-4686(96)00371-4CrossRefGoogle Scholar
  34. 34.
    Emanuel’, M.N. and Knorre, D.G., Kurs khimicheskoi kinetiki (Educational Course of Chemical Kinetics), Moscow: Vysshaya Shkola, 1974.Google Scholar
  35. 35.
    Alkaline-manganese dioxide battery MN1400, Size C(LR14), Duracell, Datasheet products. https://doi.org/www.alldatasheet.com/datasheet-pdf/pdf/619224/ETC2/MN2400.html/.
  36. 36.
    Mills, G. and Jonsson, H., Phys. Rev. Lett., 1994, vol. 72, no. 7, pp. 1124–1127. doi 10.1103/PhysRev-Lett.72.1124CrossRefGoogle Scholar
  37. 37.
    Palii, A.V., Clemente-Juan, J.M., Coronado, E., Klokishner, S.I., et al., Inorg. Chem., 2010, vol. 49, no. 17, pp. 8073–8077. doi 10.1021/ic1011296CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. L. Riabokin
    • 1
  • A. V. Boichuk
    • 1
  • K. D. Pershina
    • 1
    Email author
  1. 1.Joint Department of Electrochemical Energy SystemsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations