Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 6, pp 585–592 | Cite as

Physical Peculiarities of Corona-Discharge Motors

  • F. P. Grosu
  • M. K. BologaEmail author
  • O. V. Motorin
  • I. V. Kozhevnikov
  • A. A. Polikarpov


This work is aimed at the study of the corona-discharge motor (CDM), whose torque is produced due to the electric dipole moment, which appears at the corona discharge. The physical mechanisms and features of the CDM operation that allow us to form a calculation base for the design and construction of the CDM, are identified and discussed. The motor power consumption, dipole moment generation, rotor torque as well as some specific effects inherent to this type of motor, arising from numerical calculations which take the pulse character of the supply voltage of the corona discharge into account, are considered. It is found that the motor rotation at a constant angular rate and a synchronous rotation with the torque are impossible. The obtained results can be used as a prerequisite for engineering calculations of the corona-discharge motors.


corona discharge electrostatic motor dipole moment torque sector capacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jefimenko, O., Electrostatic Motors: Their History, Types and Principles of Operation, Beltsville, MD: Integr. Res. Inst., 2011.Google Scholar
  2. 2.
    Next-Generation Actuators Leading Breakthroughs, Higuchi, T., Suzumori, K., and Tadokoro, S., Eds., London: Springer-Verlag, 2010.Google Scholar
  3. 3.
    SATO Kaiji Research Group, Long stroke electrostatic linear motor supported by only lubricating liquids, 2016. Accessed April 20, 2018.
  4. 4.
    Nemsdaddy, 2010-01-19: The first comb-drive actuator experiment in Thailand (Winai Wanburee SUT-SLRI), 2010. Accessed April 20, 2018.
  5. 5.
    Melloch, M., Rotary electrostatic motor, 2012. Accessed April 20, 2018.
  6. 6.
    Han, J., Electrostatic motor, 2015. Accessed April 20, 2018.
  7. 7.
    RimstarOrg, Corona motor (v2) or electrostatic motor/atmospheric motor, 2014. Accessed April 20, 2018.
  8. 8.
    Gendron, D., Electrostaticmotor, 2014. Accessed April 20, 2018.
  9. 9.
    Hattori, M., Asano, K., and Higashiyama, Y., J. Electrostat., 1992, vol. 27, pp. 223–235.CrossRefGoogle Scholar
  10. 10.
    Vereshchagin, I.P., Levitov, V.I., Mirzabekyan, G.Z., and Pashin, M., Osnovy elektrodinamiki dispersnykh sistem (Fundamental Electrodynamics of Dispersed Systems), Moscow: Energiya, 1974.Google Scholar
  11. 11.
    Grosu, F.P., Bologa, An.M., Bologa, M.K., and Motorina, O.V., Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 2, pp. 141–148.CrossRefGoogle Scholar
  12. 12.
    Amjadi, A., Shirsavar, R., Hamedani, N.R., and Ejtehadi, M.R., Microfluid. Nanofluid., 2009, vol. 6, no. 5, pp. 711–715.CrossRefGoogle Scholar
  13. 13.
    Grosu, F.P. and Bologa, M.K., Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 1, pp. 43–47.CrossRefGoogle Scholar
  14. 14.
    Melcher, J.R. and Taylor, G.I., Annu. Rev. Fluid Mech., 1969, vol. 1, pp. 111–146.CrossRefGoogle Scholar
  15. 15.
    Zhakin, A.I., Phys.-Usp., 2013, vol. 56, no. 2, pp. 141–163.CrossRefGoogle Scholar
  16. 16.
    Bologa, M.K., Grosu, F.P., Shkilev, V.D., Kozhevnikov, I.V., and Polikarpov, A.A., Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 4, pp. 401–405.CrossRefGoogle Scholar
  17. 17.
    Dyudkin, D.A., Fiz. Soznaniya Zhizni, Kosmol., Astrofiz., 2007, no. 1, pp. 52–59.Google Scholar
  18. 18.
    Cronin, J.A., Greenberg, D.F., and Telegdi, V.L., University of Chicago Graduate Problems in Physics with Solutions, Chicago: Univ. of Chicago Press, 1979, 2nd ed.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • F. P. Grosu
    • 1
  • M. K. Bologa
    • 1
    Email author
  • O. V. Motorin
    • 1
  • I. V. Kozhevnikov
    • 1
  • A. A. Polikarpov
    • 1
  1. 1.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauRepublic of Moldova

Personalised recommendations